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ABSTRACT

This paper presents applications of semi-Boolean algebras to
empirical logic and ring theory. The development of semi-Boolean
algebras from subtraction algebras is shown and the identity of the
two is established. Examples of subtraction algebras are given. A
weakening of one of the subtraction axioms leads to a structure which
is non-distributive but orthomodular. Known as orthosubtraction
algebra, this structure is identical to a semi-orthomodular lattice.
Since the subspaces of a Hilbert space (and thus the projections)
form an orthomodular lattice they also form an orthosubtraction
algebra. Examples of orthosubtraction algebra applied to Hilbert
space are given.

The concept of a manual and how it relates to empirical logic
is introduced next. The set of events of a manual is a semi-Boolean
algebra. It is atomic and dominated and has relations of operational
complemtation and operational perspectivity defined on it. From
these relations the manual condition is defined and the semi-Boolean
algebra is a DASBAM. Examples of manuals and DASBAMs are given. <-
In a DASIAM the operational perspectivity relation is an equivalence
relation and a quotient structure of equivalence classes modulo this
relation can be formed. Known as the op logic, this structure inherits

* .. some properties from the DASNAM. It is not a lattice and it is not
3 distributive, however. It does form what is called an associative

", orthoalgebra. Examples of op logics are given.
The results from semi-Boolean algebras and DASBAMs can be

applied to certain types of rings. Boolean rings form classical
DASBAMs. Fields form semi-classical DASBAMs in which every atom is
a maximal element and vice versa. Semi-simple rings form DASBAMs

*which are direct products of field DASBAMs. The projections of
rings with involution form associative orthoalgebras from which
DASBAMs can be generated. In the special case of a Baer *-ring

"-: the projections form an orthomodular lattice.
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INTRODUCTION

This paper presents a summary of the findings and results of my
Trident Project, undertaken in the academic year 1981-82. The original
working title of this project was "Applications of Orthosubtraction
Algebra to Hilbert Space," but as the research progressed the main topic
became the application of semi-Boolean algebra to empirical logic. A
chapter on orthosubtraction algebra and its application to Hilbert space
has been included in-the text.

According to Foulis and Randall of the University of Massachusetts
the goal of an empirical science is to "order, explain, and predict the
observable events associated with certain physical situations or exper-
iments." Empirieal logic is the attempt to formalize a logical calculus
of experimental propositions for use in the empirical sciences. The
level at which this is done is the operational level, hence the term
"operational statistics".

In this approach the basic concept is that of an operation. Each
operation is a classical experiment with outcomes that form a classical
sample space. Techniques of conventional probability theory based on
measures on a Boolean algebra can be applied to each operation alone.
Often, however, the experimenter has a collection of operations which
overlap. The performance of onet interferes with the performance of
another and a non-classical situation is generated. It is this case
that the theory of miauals was formulated to handle.

Foulis and Randall define a manual mathematically as a non-empty
set of non-empty sets 1ich are irredundant and in which the manual
condition is satisfied. From the operations, subsets of outcomes can
be formed. These are known as events since they correspond to events
in the classical probability sense. The set of all events forms a
semi- Bolean structure as defined by Abbott and his students at the
Naval Academy. It is the application of the theory of semi-Boolean
algebras to the theory of manuals that is the main focus of this
paper.

One such application came from an unexpected area, that of ring
theory. Some of the nicest results come from the theory of manuals as
applied to certain types of rings. This use of ideas motivated from
empirical science in the study of the almost purely abstract area
of rius is somewhat serendipitous. it illustrates some of the beauty
of mathematics in that it connects seemingly unrelated areas.

in Chapter I the idea of a subtraction algebra is introduced.
Subtraction algebras are duals of implication algebras is developed
by Abbott and Kleindorfer at the Naval Academy in 1961. In Part One
the subtraction axioms are introduced and some properties are derived
from them. Theorem 15 and 16 establish the fact that subtraction algebras

and semi-Boolean algebras are identical. As a result many of the ideas
from semi-Boole&n algebras may be applied using subtraction notation.
Some examples of subtraction algebras are presented. In Part Two con-
cepts from universal &lgebra are discussed in the context of subtraction

algebras. These include the ideas of subalgebras, homomorphisms,
ideals, congruence relations, and diredt products.

............
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Chapter II examines the effects of a weakened form of the third
subtraction axiom on the structure. The result is orthosubtraction algebra,
which is the dual of the orthoimplisation algebra of Abbott and Kimble.
Again properties are derived from the axioms. Theorems 14 and 15 estab-
lish the correspondence between orthosubtraction algebras and semi-
orthomodular latticed. In Part Two these results are studied in the
context of Hilbert space. Specifically the application of orthosubtraction
to the lattice of subspaces of a Hilbert space and to the set of
projection operators on a Hilbert space is made. Some examples of
orthosubtraction algebra as applied to particular Hilbert spaces are
given.

Chapter III introduces the idea of a manual. Part One discusses
the intuitive notion of a manuil and presents the set theoretic def-

S4. initions of Foulis and Randall. Part Two illustrates how subtraction
algebra can be applied to manuals to generate DASBAMs. "DASBAM" is an
acronym that I coined to stand for Dominated Atomic Semi-Boolean Algebra

J .satisfying the Manual condition. Theorem 3 states the ideitificatlon
between event structures of manuals and DASBANs. Part Three gives some
ciassifications of DASBAMs. These include classical DASBAMs, semi-
classical DASIAMs, dacifications, direct products, and free DASBAMs.
The idea of ghosting is defined. Part Four presents some examples of
DASIAMs sad manuals.

Chapter IV investigates some properties of the operational per-
spectivity relation defined in the previous chapter. A tey structure is.
formed, known as the op logic. Part One presents some properties of the
op logic. The idea of an associative orthoalxebra is introduced and

.3 j Theorem 13 shows that the ov logic of any DAS1IM is an associative
orthoalsebra. Part Two illustrates some examples of op lotics.

Chapter V introduces the subject of ring DASBANs. Different
types of rings are shown to exhibit a partial order. Some of these
form DASBAMs directly, others form associative algebras from which
DASRAM* can be generated. Part One shows how a Boolean rine with identityp forms a Boolean algebra and thus a classical DASBAM. Part Two shows
how a field Produces a semi-classical DASBAM in which each atom is a
maximal element and vice versa. Part Three uses Theorem 111-6 to show
how finite semi-simple rings form DASBAMS which are direct products
of field DASIAMs. In Part Four rings with involution are discussed.
They are shown to yield associative orthoalgebras which in turn yield
DASBAM.. The secial case of a BNer *-rins. which produces an ortho-

Smodular lattice is Presented.

These subjects are only a small part of the areas that I would have
* liked to have covered. The aPlication of ideas from Probability theory

such as weights and states and the notions of oroperty lattices and
questions from Piron and Aerts are subjects that I, did some study-in.
Unfortunately I need to study these in more detail in order to present
them properly..l hove to have an opportunity to do this and to use this
paver as a basis for further research.
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CHAPTER -I: SUBTRACTION ALGEBRAS

PART ONE: Definitions and Properties

A subtraction algebra S - (S,%4,) consists of a carrier set S with a
binary subtraction operation satisfying three axioms.

Si x%(y%z) - x (contraction)

2 x\(x-.y) - yN(y~.x) (quasi-coummutative)

S3 (x-.y)z - (xz)y (exchange)

Lema 1: (x~y)%y - x*.y

Proof: (x%y)%y - (x~y)%(Y--(Xy)) - y

Lsm 2: x~x (yz(y)

Proof: X'x - x(x(y'x)) Y (yX)Iw(y,%x)%x) -(yx)%(yi.X)

Theaces 1: There exists a constant o e S such that

(a) x'x -o

(b xo - x

(c o X o

Proof:

(a) It must be shown that xx is independent of x, that is x'x -%.
for all x' ad y in S.
(xx) - (y% x) .(y.,x) - (y%(y'x)).% (y-.(y-x))

- (x%(x-y))%(x(x'.y)) - (x%y)%.(X%y) - yy

(b x %o x %(x-x) x

Wc o'x -(x%x)..x X - o.

Thergs2: For all x and y in S the following are true:

(a) (x%y)%x - o

Wb y%(y%.(Y.x)) - yx

Wc X.-(y%(yx)) - X%y

(d) (y,%(y-x))%-x -(y-.(y%x))%-y o

(a) (x-y)%(yz) -X%Y

Proof:

(a) (z%y)%.x - (xhx)%y -o%y -o

(b) y-.(y%(yx)) - (y%x)'%((y-x)%y) *(y-,x)'o -y~x

Wc x..(y'(y-X)) - x'.(x-(x*,y)) - X'.y

(d) (y%(y~x))$x - (x%.(x%y))%-x - o

(e) (x--y)%-(yNx) - (x%(yX))%y a x'-y
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From these results another Theorem can be established.

Theorem 3:
(a) xxy - y-x if and only if x - y

(b) xy - x if and only if yx - y

(c) xy - y implies y - o - x

Proof:
(a) Suppose x~y - y%x. Then x - x%(yx) - x-(x~y) = y%(y~x)

- y%(X%y) - y.

(b) Suppose x~y - x. Then y~x - y%(xy) - y.

(c) Suppose x%y - y. Then y - y%(x~y) - y-y - o

Also x-.y - x~o - x mad x - y hence x - o

From the results in Lamms 1 and a and Theorems 1 and 2 it is possible
to find all elements generated by two general elements x and y. This is
know as the free subtraction algebra on two elements and consists of the
sfx element set (o,.x,y,x-y, yx, x-(xzy). The subtraction table is given
below:

o.yoxy yx x%(x%y)

0 0 0 0 0 0 0

x x 0 xy x%(xY) x x~ y

y y yx o y X%(xry) y~x

x.y xy 0 xy 0 x% y xy

7% x y x y%x 0 yX 0 y-x
• .x%(XY) -x(x.y) o x--. y) x%(xy 0

Table 1

Theorem 3 allow the construction of special algebras satisfying

additional conditiome.

The next theorem provides some identities on three elements.

Theorem 4: For all x, y, and z in S:

(a) (zsy)'(z'x) - (xy)%(xz) S5

(b) z,(z,(y,,X)) (zx).(z%(y~x))

(C) (y%(y(Z.X)))\ (y*x) - o

(d) y~z - o implies y,.(y%(z-.x)) - Yx

(e) (zy)%x (zx)%(y*x) (autodistributive) S4

-. .L ..' -_ : - ' - ' ' . - " .' , ." " .:i , : .- + +, - i ., , / ,. -, i. i • :
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f)z%(z(y'x)) -(z%-(z-y)x

(g) z%-(z,(y.(yx))) - x,(.(-y%(yx)))

Proof:

(a) (z-y)-..(z-..x) -(z'(z-,x))-y (x%,(Iaz ))-,y -xy).(x-.z)

(b) z-(z%-(y -)) - (y--x),-((y--x)%-z) - yx-x-(-x.z

(c) (y%(y(z-.x)))%-(Y-x) - ((y-x)%(y%".x)))% (yX) M 0

(d) Suppose y~.z - o. (y%x)(y%(y-,.(z%x))) - (-(-(,(.X)).
- y(z'.x))%x - (y..x)%(z-x (-)O.(-x) - ((y-Xx)%o)Z))(z%x)

-((Z-x)\.(y)).(z-,x) - o - (y%(y-.(z%x)))%(yNx)
Thus (Y~x) - (y\(y%,(z%.x))) by Theorem 3a.

(e) ((z%y)'-x)%((z%x)%(y~X)) - (zx).%y)% ((z~x)t. (y'..x)
-((y--0x)..y-.((y~x)%'(z'.)) -o((y-x)%,(z.,x)) - 0

((z--x),(Y.-))-(Z-Y - ((z%x)%.(y'.x))%((ZxY..y)
-((au-x)%((zx)'..y))%(y%x) -(y.(y%(z--x)))..(y-X) - o

Sims. ((z.-y)%x) ,((z~x) .(y%x)) . ((z %x)%(y%x) ) .( (z'y)-x)
them by Theorem 3a (z-y)%.x -(~)("

Mf z%.(z'm(y-x)) - (y..X)%((y'x)*.Z) M (yx)%((yz)%x)
- (y--x).((y..X)%(z%x)) - (z--xc)%((z%x)%.(y'x)) -(z'..x)%,((z'y)%x)

- (2%(z--y))%x by the autodistributive law.

(g) z%-(z*'Y(Y.yx))) - (z%-(z.y))-(y%x) - YY-),(.X
-(x%(y-.z)),.(wy) - (X-.(z.y))N(y-.z) - -(%YY-Z)

b7 using the result of Theegem 4f.

From Theorem 4 alternate characterizations of subtraction algebra can
be obtained.

Theorem 5: A subtraction algebra is an algebra satisfying Si and S5.

Proof: It is necessary to verify S2 and S3.

(32) x.-(x~y) - (x%(y,%x))%-(x--y) - (y-(y%x))-%(y%x) - y%(y%x)

(S3) It shall be shown that ((z,%y)mx)%((z%x)%.y) - o and without
loe of generality ((z-.x)%y)%((z.,y)%x) = o. Since Theorem 3a
wen proved only using Sl and S2 the end result will follow.

((u'.y)%x)%((z%z)%Y) - (((Z..y)%x)%((z%y)'z))%-((z--x)%.y)
- ((z,%z)%(z%(z"y)))%-((z%x).y) - (y%(z%(z-y))V-.(Z-x))
- (Y-y'..(Y-yz)))'%.(Y%(z'x)) - (Y~Z).-(y%(Z.X)) - ((z~x)%-z).,((z%x)%y)]

a %( (z% x)% y) - o.-

Thuts ((ax)%y)*%((z-.y)%-x) - ((z--y)%x),%((z-.x)%y) and hence
by Theorem 3a ((z-wx)%y) -( J)x

Prom the subtraction identities a partial order relation may be defined
on (S%-). A partial order relation is a binary relation which is reflexive,
antisyme*tric, and transitive.

Definition 1: x < y if and only if x~y -o
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Theorem 6: (S,%, <_) is a partially ordered set.

Proof: (Reflexivity) x < x as x-x - o,

U (Antisymmetry) Suppose x < y and y < x, that is x-y = o - yx.

Then x - y by Theorem 3.

(Transitivity) Suppose x < y and y < z, that is x.y - o - y~z.

x' "- (x'o) z - (x%(x-.y))%z - (y%(y-x))Nz - (yz)(y.~X)

0 - o%(yx) - 0, thus x < z.

Thoerem 7: x < y implies x-z < y-z (Isotone Law)

Proof: (x'z)-.(y-z) - (x-y)%z - o-.z - o, thus x.z < yz.

Theorem 8: x < y implies zy < z-x (Antitone Law)

Proof: (z~y)(z-x) - (x-.y)%(xz) - o-(x.z) M of thus z'y < zx.

Theorem 9: o is the greatest lower bound for S,

Proof: It must be shown that o is a lower bound and that if z is any

other lower bound for S then z < o.

First, since ox - o it follows that o < x for all x in S.

Secondly, if z is a lower bound then z < o, but also o < z, therefore

0 Z.

* Theorem 10: x < y if and only if there is some z such that x -yz

Proof: Suppose x < y, that is x-y - o.

I x M x-o M x%(x-y) - y- yYx).

Let x - y-z, then x~y - (y-z)%y - o, thus x < y

For each element x in S a subset I(x) of S can be defined, where
I(x) - fyly < x). Theorem 10 states that I(x) - fxzlz £ S), and is
somewhat like a right ideal in other algebraic structures. I(x) is
called the principal ideal generated by x.

Given a partially ordered set a diagram may be drawn showing the
partial order. The elements are represented by points and the relation x < y
is represented by a chain of upward segments from x to y. The partial order
diagram for the algebra of Table 1 is shown here.

1%

Figure 1
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Theorem 2d states that x-%(x%y) is a lower ho md for x and y, that is
:x-(x-y)< x and x-.(x-y) < y. In general it is desirable to know what the

greatest lower bound of x and y is.

Theorem 11: x-.(x-y) - y\(y\x) is the greatest lower bound of x and y.

Proof: The above remarks show that x.(x-y) is a lower bound. Suppose
z is a lower bound for x and y, that is z < x, z < y or zx- Wo 0 zy. "

| (x-(x-y)) - (z-"(x(x~y)))-o (z\(x%(xxyM)) (Z-x)
- (x(x.(x-y)))(xz) - (x-y)%(x-z) - (zy)-(zx) - O%0o - 0.
Thus z < x-(x'y) and hence x%(x~y) is the greatest lower bound..

This last theorem shows that any pair of elements (and, by induction,
any finite set of elements) has a greatest lower bound, or "meet." We will
denote this meet by x A y or in case there are more than two elements,
A 1 xi where I is an index set. However, there is not necessarily an upper

bound for any general pair of elements. An example of this is shown in
Figure 1, where x and y do not have a least upper bound, or "Join" (denoted
x V y). A structure closed under both meets and joins is called a lattice.
A structure closed only under meets (or joins) is called a meet (or join)
sesi-lattice.

Corollary: (S,\ , <,A) is a meet semi-lattice.

There are some cases where a least upper bound does exist.

Theorem 12: xVy eists if and only if there exists z e S such that x < z,
y < z. Furthermore x v y - z((z%x)%y).

Proof: Suppose x < z, y I z. Firstly, (z-x)%y - (z'.y)".(x'.y)
- (z--y)'-((xy)%o) - (zy)-((xy)%(xtz)) - (z-y)((zy)(zx)) = (z-yXA(z1X)
Thus z-((z.x)Ny) - zN((z-,x)A(zy)).

Next x,.(z-%((z-.x)%y)) - x%.(z%.((sx)A(z~y))) I x.(z(z-x)) by applying
the antitone law twice. x%(z-(z-.x)) o((,) -o y(z((zx)y))
without loss of generality sad z%((z-x)%y) is an upper bound for x and y.

Finally, suppose x < p and y I p. It met be shown that (z'.((z-x)%y))%p - 0.

(a%.((z--x).y))%p - zp)%(((zrx)%-y)%p)
. (zp)%((Zp)%(yp)) - (z-p)%((zp)%o) - (z.p)%(z~p) O and hence
Z-((z-x) y) < p.

V Therefore x V y - z%((zx)%y).

Corollary: For all x £ S I(x) is a lattice.

Proof: Let y e I(x) and z e I(x), that is y.1 x and z < x.

Y A z I Y 1 x implies Y,%% e 1(x).

Also, since x is an upper bound z V y exists and z V y < x, therefore

z y e I(x).

------------------------.--'.i
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Theorem 13: (Distributive Laws). If x,y, and z have a common upper bound
then

(a) (X y) Vz- (xVz)A(yVz)

(b) (x V y)hz - (x % z)(y ^ z)

Proof: (b) will be proved, then (a) will follow from (b).

To show (b), note that z < (xV z) and z < (yVz), thus z < (x / z)A(yV z).
Also x A y < x < x V z and x sy < y < y Vz, thus x Ay < (xV'E)A(y v z).
Therefore (x y)4z < (x vz)(y Vz).

Let r denote (X q z)A(y V z) and u denote x v z. Clearly r < u and
thus r~z < u~z

Also u - u%((uz)%x)

thus u- - (u%((u%z)%x))Nz - (U.z)-((u-z)-x)
= (u.z)((u'.x)%.z) - (u-(u-x))%z - Xz < x

Sime r~z - x~z it follows that rz < x

Iitbout loes of generality r~z < y

lkace rz < xA y and (rz)%(xA y) = o

r = r~o = r%((rz)%(x A y)) - zV(x A y), the desired result.

For the proof of (a) use (b), thus

(IV z)^(yVz) - (x h (y V z))v (z A (y V z)) (X Ay)v(xA z) Vz
S-zV(x ).

Corollary: I(x) is a distributive lattice.

An overall complement cannot be defined on S as there is not in general
an upper bound. However, a relative complement can be defined.

Theorem 14: If x < y then yNx is the complement of x relative to y.

Proof: (a) x A (y~x) - x%(x%(yx)) - xx - o

,(b) x V (y-.x) - y\((y-.x)%(y-.x)) - y-.o - y

- (c) y%(yx) - yAx- x, thus (x)y= x.
yy

Definition 2: A Boolean algebra is a complemented distributive lattice
,- with an upper bound and a lover bound.

Corollary: For all x in S, I(x) is a Boolean algebra.

here general than a Boolean algebra is a semi-Boolean algebra.

Definition 3: A semi-Boolean algebra is a meet semi-lattice in which every

principal ideal is a Boolean algebra.

Theorem 15: Any subtraction algebra is a semi-Boolean algebra.

- ,'."Proof: Follows from the corollaries to Theorem 12 and Theorem 14.
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Theorem 16: Any semi-Boolean algebra is a subtraction algebra where
subtraction is defined as xy - (x -N y); where I denotes the relativex x
complement with respect to x.

Proof: The three axioms must be verified.

(Sl) x,(yx) -x-(x A y) - (x A (X A y)')'-̂ y ̂ x ̂yy "jyx^ -x~ x"
iiil: (s2 - ,(xA.yA -(x ,y)')) - (xi ..^Y),Ax y))'̂ o " ^

yyx
(S2) x%(x%y) - x-%(hy); - (X A (X Ay);); - ((X Ay););' - A y

which is symmetric in x and y and thus x%(xy) - y%(y.x)
(S3) First x' x' A (z~y), thus (zXy))x- ((z-y)A X)y

Z%y Z Zy% (y)A -.

S((z.y) P X)' ^ (zy) - ((zy)A(x A z))' A (z~y) - ((ziy)' A(z A X)Z)A Z%

- ((zx)A(zNy))v ((z-y);A(zy)) - (zx),(zy) is symmetric in

x and y, thus (zy).%x - (z'x) y

Therems 15 and 16 together yield the result that the categories of
semi-Boolean algebras and subtraction algebras are identical.

The corollary to Theorem 14 states that every principal ideal in a
subtraction algebra is a Boolean algebra. What if the entire algebra is
a principal ideal?

Theorem 17: (S,%) is a Boolean algebra if and only if there exists a

constant 1 e S satisfying x < 1 for all xeS.

Proof: S is the same as I(1) and is thus Boolean.

This definition of Boolean algebra, utilizing one binary operation,
one nullary operation, and three axioms is perhaps the simplest possible.
By Theorem 5 the simplest axiom set is 2l, S5 and Theorem 17.

The following are examples of subtraetion algebras:

Example 1: A Boolean algebra (BV,4,o,l,') is a subtraction algebra under
xy - X 'Z .

-xample 2: Let X be any set, A and B subsets of X. Define A%B ( fa c Ala B}.
The power set P(X), the set of all subsets of X is a subtraction algebra under
this subtraction.

* Example 3: Take X as in the previous example and take 10(X) to be the sub-
collection of P(X) consisting of all subsets of X having 10 elements or less.
Define subtraction on 10(X) the same way as on P(X). Since A%B has fewer
elements than A if A e 10(X) then ANB e 10(X) for all B. The axioms check out
and thus 10(X) is a subtraction algebra. It should be noted that if A and B
are each 10 element sets and A 0 B then AV B has more than 10 elements and

4 thus A and B have no upper bound in 10(X). Therefore this is an example of
a subtraction algebra which is not a lattice.
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Further analogous examples can be generated by considering the set
of all finite subsets of X or the set of all countable subsets of X.

2Example 4: Let (R,+,-) be a ring satisfying x = x for all x in R. This
ring can be shown to be commutative and of characteristic 2 (x + x - o for
all x e R). Define x-y - x + xy. The axioms are verified:

2
(S1) x%(y'x) -x%(y + xy) x4- + xy + x y = x + xy + xy x
(S2) x-%(x-.y) - x%(x + xy) - x + x 2 + X 2y - X + X + xy =xy - yx - y*-(y-.x)

n (Thus xAy -xy)

(03) (z.x)-.y - (z + zx)-y - z + zx + zy + zxy is symmetric in x and y,
thus (zx)%y - (zy)%x.

Any Boolean ring is a subtraction algebra. Furthermore a Boolean ring
with identity becomes a Boolean algebra where x ̂  y - xy, xV y - x + y + xy,
and x' - 1 +x.

Ivan without an identity x v y - x + y + xy exists for all x and y and
therefore R is a lattice, though it is not necessarily bounded above. This

* is known as a generalized Boolean algebra.

PART TWO: The Algebra of Subtraction Algebra

Since a subtraction algebra is an algebraic structure all of the usual
algebraic notions may be applied to the study of subtraction algebras. The
first is the concept of a subalSebra.

Definition 4: A subalgebra of a subtraction algebra (S,%) is a non-empty
* subset T C S which is closed uder subtraction. That is, if x e T and y e T

then x~y c T.

Lemma 3: If T is a subsubtraction algebra then o e T.

Proof: T is non-empty, thus there exists x E T, T is closed under
subtraction, therefore x%x - o e T.

Theorem 18: If {TWI (where a e r and r is any index set) is a collection
of subalgebras then /) r Ta is a subsubtraction algebra.

Proof: o e Ta for all a e r implies o c n r T , thus r T is non-empty.

LtxeA Tand y e r%. T ,then x e T and y e T_ for all a e r.
Le •/r Q o ll r Q~ haCL~~y

which implies x~y e o l r an ecF~ a"

This theorem means that one can define the subalgebra generated by a

subset X a S as the intersection of all subalgebras containing X.
Another commonly used idea is that of a homomorphism.
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Definition 5: Let S and T be subtraction algebras. A subtraction homomorphism
(homomorphism in this context) is a mapping *:S * T which preserves subtraction,
that is f(x~y) - *(x)4(y) for all x and y in S.

Lemma 4: If 4 is a homomorphism then *(o) = o

Proof: 4(o) f ¢(xax) - ¢(x)\¢(x) - o.

Theorem 19: If 4 is a homomorphism then 4 preserves order, that is x < y
implies f(x) < f (y)

Proof: x < y implies x\y - o, thus 4(x)\f(y) - f(x-y) - 4(o) - o
and hence f(x) < 4(y)

Definition 6: If 4:S T is a hemomorphism then the kernel of 4 is the

pre-image of o, or:

ker 4 = {x e S1c(x) - o

Theorem 20: ker 4 is a subalgebra of S.

Proof: From Lemma 4 o e ker 4 and thus ker 4 is non-empty.

Let x and y be in the kernel, then 4(x) - 4(y) - o
¢(x-y) - f(x)%¢(y) - o'o - o and thus x~y e ker 4.

Theorem 21: x e ker and y< x imply y e ker

Proof: x e ker 4 implies 4(x) - o. 4(y) * *(y)o = ¢(y)%¢(x)
= €(y x)€(o) - o and thus y e ker€

Theorem 22: x e ker 4 and y e ker 4 imply ¢(zx) = ¢(z~y) for all z c S.

Proof: f(z.x) = *(z)%¢(x) f ¢(z)\o - ¢(z)%¢(y) - ¢(z~y)

Theorem 23: x e ker 4. y e ker 4, and xV y exists imply x V y c ker 4.

Proof: Suppose x V y exists. Since 0 preserves order *(x V Y) 
*(x)'l f(y) - ov o - o and therefore x Vy e ker4.

The previous two results set the stage for the next definition:

Definition 7: An ideal in a subtraction algebra is a subset I C S satisfying
two conditons:

(1) x e I and y_< x imply y e I

(2) x e I, y e I, and x V y exists imply x V y c I or, equivalently

(1') x c I and yx e I imply y c I

(2') o c 1

Theorem 24: If 4 is a homomorphism then ker 4 is an ideal.
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Proof: Follows from Theorems 21 and 23 and Definition 7.

A closely related idea in algebra is that of a congruence relation.

Definition 8: A congruence relation is a relation which satisfies the
following four properties

(1) x x (reflexive)

(2) x y implies y x (symetric)

(3) x y and y z imply x z (transitive)

(4) x y and w E z imply xw =- y-.z (substitution property)

The kernel of a congruence relation is the set of all things congruent
to o and is designated by ker - or o.

Theorem 25: If S is a congruence relation then there is a natural homomorphism
areciated with -, n:S. 9 where S - {iIx z S1 and fyly z x1. Furthermore,
o - ker ni

Proof: Define iy - Since - has the substitution property this
subtraction is well defined. From this definition subtraction is obviously
preserved and thus n is a heomirphisa.

Let x e o. n(x) - - 08 x x implies x c ker n

Lt x r n, tht is () G^ -(Iy -ximplies x z

Since er nl c and o ker n it follow that o - ker ni.

If I G S is an ideal a congruence relation modulo I can be defined.

* Theorem 26: If I is am ideal then the relation x 3 y mod I if and only if
x~y e I and y%x c I is a coagruence relation.

Proof: (1) o e I implies x-x e In d thus x - x mod 1.

(2) x B y mod I if and only if y - x rood I follows from the
hypothesis.

(3) Let x - y od I and y = z mod I. Then x-y, y-x, y.z
ad wa.y are all in I, which means that (y-.z)N%(y'x) c I.
(y'z)-(y'x) - (x-z). (xy) e I. By condition 1' of an
ideal x~z e I. Likewise, without loss of generality
z cxe I, therefore x - z mod I.

(4) Let x - y od I and w z mod 1. First it will be shown
Jkat x-.v y'w wmd 1, then it will be shown that yw yz mod I.
The end result will follow by transitivity shown above.

(a) xy c I and yx c I since x - y mod 1.
(xw)%(yw) - (x-y)%w e I, also

f(yw)%(xW) - (yx)%w C I
Thus (x-..w) = (yw) mod I

(b) wxz I and zw e I since w z mod I
(y.w) .(y.z) (z-W)N(zy) C I, also
(Yz),,(yw) - (wvz)%(wy) C I.

L Thus (y-w) - (yz) mod I.
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Therefore x-w a y~z mod I by transitivity.

The machinery is now been established for "The First Fundamental
Homomorphism Theorem of Subtraction Algebra."

Theorem 27: Let 4 be a homomorphism, then the range (S) is isomorphic
to the quotient structure S modulo ker 4.

Proof: It must be show that there is a one to one, onto mapping
from O(S) to S, denoted * where *(O(x)) = x

(a) (One-to-one). Suppose *(O(x)) - *(4(y)), then x - y and hence
x-y e ker 0 and y.x e ker 0. Thus #(xy) - o - 0(yx) and
4(x)%(y) - o - #(y)%#(x) and therefore O(x) - 0(y)

(b) (Onto) Let i e S. It must be shown that there is a 6(w) e O(S)
such that *(*(w)) - z. Choose w - z, then *(4(z)) - ;.
Therefore #(S) ad S are isomorphic.

As the preceding results indicate many of the ideas associated with
homomorphisms in other systems of algebra can be defined when considering
subtraction algebras. Term such as injections, surjections, isomorphisms,
automorphisms, etc. can be defined. One can speak of the automorphism
group of a subtraction algebra.

*! One other algebraic concept needs to be introduced.

Definition 9: The direct or Cartesian product of two subtraction algebras
S and T is defined as the set of all ordered pairs (s,t) where s e S and
t c T, that is

S X T - f(s,t) e c S and t c T).

Subtraction is defined (s,t)'.(s',t') = (s8s', t~t'). It is easy to
verify Sl through S3 sad thus S x T is a subtraction algebra. This concept
can be extended to arbitrary direct products in the usual way.

Finally the idea of a free algebra can be defined.

Definition 10: The free subtraction algebra generated by a set of elements
A, S(A) is the set of all unique elements that can be derived by combining
elements in A and making only the identifications derived from Sl, 52, and 53.

The algebra given in Table 1 and Figure 1 is the free subtraction
algebra on two generators, S(fx, y}).

* This section has shown that most of the ideas of universal algebra
apply to subtraction algebra. Specifically, the category of subtraction
algebra is closed under subalgebras, homomorphisms, and direct products.

° I
"
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CHAPTER II: ORTHOSUBTRACTION ALGEBRAS

PART ONE: Definitions and Properties

The properties of subtraction algebras given in the previous chapter
were derived from the axioms Si, S2, and S3. In this chapter the effects
of weakening S3 on the structure.will be examined.

Definition 1: An orthosubtraction algebra is a structure S - (SN) where
* S is a carrier set of elements and % is a binary operation satisfying three

axiom.

Sl x-(y-x) = x
S2 x%(xY) - y%(yx)

03 (z-(x-y))-x - z-x

Axem S1 and S2 are the contraction and quasicomutative axioms from
subtraction algebra. Axiom OS3 is a weakening of the exchange axiom.

-* Theeren 1: If S is a subtraction algebra then it is an orthosubtraction
algebra.

Proof: It is only necessary to verify 0S3. Let S be a subtraction

*. algebra, then it satisfies the autodistributive law. Hence:

(z (z-y)).x - (z-x)%((x-'.y)%x) - (z-x)%o - z.x

.J The similarity between subtraction and orthosubtraction algebras means
S-j that mny results from subtraction algebra carry over to orthosubtraction

algebra. Specifically, those results derived from S1 and S2 also hold in
orthoeubtraction algebra and are suarized here without repeating the
proofs:

Theorem 2: The following are true in any orthosubtraction algebra:

(a) (xy)%y - x'y

(b) x-x - (yx)%(y-x)

(c) There exists a constant o e S such that

1. xz -

2. xe- x

3. o .x o

(d) xy -yx if and only if x y

(o) x-y - y if and only if x -y o

Lemm: (x-y)%x - o (084)

roef: (xzy)%x - ((xy)(xy))%x - o-x " o by applying OS3 and
Theorem 2.c.
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This result held in subtraction algebra but with a different proof.
Most of the results of Theorems 1, 2, and 3 from the previous chapter can
now be established and are again stated without proof.

Theorem 3: The following are true in any orthosubtraction algebra:

(a) y-(y-(yx)) - yX

(b) x'.(y-(yx)) - x-y

(c) (y,%(y-X)),x - (y(yx))%y - o

(d) xy - x if and only if yx =y

Only one more lema is needed.

Lem: (x.y)-(y-x) - xy

Again, as with subtraction algebra it is possible to find all elements
generated by two general elements x and y. This is the free orthosubtraction
algebra on two elements. Since the previous results are identical with those
from subtraction algebra the table is the same and is not repeated here.

There are two more results which should be stated here.

Theorem 4: (a) y-x - o implies (z'y)-x zx (0S5)

(b) yz - o implies (ax)-(z y) - o

Proof: (a) (z%y)%x - (z%(y'o))%x - (z--(y%(y-x))%x -

(z%(x%(x~y)))%x - z'x by 3C and OS3.

(1) Suppose yx - o. (zx) (z%y) - ((z-y)%x)%(z-y) - 0

it is now possible to give an alternate set of axioms for orthosubtraction
algebra.

Theorem 5: An orthosubtraction algebra is an algebra satisfying Sl, S2,
0S4, and OS5.

Proof: It is only necessary to show that OS3 can be derived from S1,
S2, os-nd os5.

From OS4 (xy)%x - o, thus by 05 (z%(x-y))%x - zx

A partial order in ters of the orthosubtraction may now be defined.

Defininition 2: x 4 y if and only if xy - o

Theorem 6: (S,'-., <) is a partially ordered set

Proof: (1) xx - o implies x < x (reflexivity)

(2) Let x < y, y _ x; i.e. x'y - o - y-x.
Them x y by Theorem 2d. (anti-symmetry)

(3) Let x < y, y < z, i.e. xy o y-.z
By OS5 yz - o implies x-z - (xy)%z - oz - o,
thus x < z (transitivity)
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Theorem 4b now becomes the antitone law as in subtraction algebra.

gTheorem 7: o is the greatest lover bound for S.

Proof: To show that o is the greatest lower bound two things must be
established, that o < x for all x in S and that if z is also a lower bound
then z < o (hence z - o).

o < x follows from Theorem 2.c.p

Let z < x, then z < o and z~o - o; thus z - o by Theorem 2.e.

Theorem 8: x < y if and only if there exists z e S such that x - y-z.

(a) Let x < y, that is x~y - o. Then
y-(y,(Y(yX))) - y-((yx)-((yx).y)) - y(y-Xx) o) - y.-(yx)
M x%,(x%y) - x.o - x, i.e. x - y%z where z -y-4y (yxx).

(b) Suppose x - y-z for some z. xzy - (y'z)%y - o and hence x < y.

The es notion of principal ideal generated by x, I(x) - {yly • x)
= (x-zlz e S) can be defined.

Theorem 9: The greatest lower bound of x and y under < is x' (x'y).

Proof: From Theorem 3c. x%(x~y) < x and x%(x'y) < y.
Suppose z < x and z < y, that is z-x - zy - o.

z - zo M z%(zy) - y-(y.z) < y-(y..x) by applying the antitone law twice.

From this theorem it follows that (S, , <) is closed under meets.

The meet of x and y, x%(x.y) shall be designated by x % y.

Corollary: (S,lk, <,A ) is a meet semi-lattice.

Lower bounds always exist, but under what conditions does a least upper
bound exist?

Theorem 10: x V y exists if and only if there exists a z c S such that
x < z and y.1 z. Furthermore x v y - z%((z-y)(zx))

Proof: Suppose such a z exists, that is x%z - o - y~z. It is
necessary to show first that z-.((z'y)A(z-%x)) is an upper bound.

x%(z%((zx)A(zy)) < x\(z%(zx)) by applying the antitone law twice.
x%(z%(zx)) - x%(x,(x-z)) - xz - o, thus x < z%((z'x)A(z-y)). Without loss
of generality y < zN((zx)A(zy)).

Finally, suppose x < p and y < p, then z-p < z'x and z'p _ zy, thus
Zp < (Zsx)A(zy)

Applying the antitone law again z%((zx)A (z-y)) < z'(zp) and
z%((z-x)A(z,.y)) . zA P < P.

Therefore x Y y - z%((z-x)^(z-y))



20

Corollary: I(x) is a lattice for all x in S.

This next theorem is the orthomodular law expressed in terms of

orthosubtraction, as will be shown later.

Theorem 11: (OMS)

If x _ y < z then x = y%(z-x)

Proof: Suppose x < y < z, then x x A z - z%(z,.)
Since x < y then by the antitone law zy < zx and thus z.(z.x)
- (z',(zy))%(z~x) by 055.

(z%(zy))%(zx) - (zpy)%(z~x) - y.(zx) since z A y - y.
" I

Theorem 12: If x < z then z~x is a relative complement of x in I(z), denoted x

Proof: (zx) A x - (zx)%((zXxX) - (zmx)%(ZX) - 0.
(zx) V x - z%((z-x)A(z-(Z-x))) - z-((z.x)^(z~x)) - z-((%zx)%x)
- Z%0 a Z.

Definition 2: An orthomodular lattice is a bounded lattice satisfying the
following properties:

1O1: x 1 x xA x *0

O)2: xU x

t0)3: If x < y theny I< x1

0K4: If x < y then x - y A (x Vy ) (Orthomodular Meet Identity)

Theorem 13: For all z in S I(z) is an orthomodular lattice.

Proof: (01) was verified in Theorem 12.

o ) )-. z(x ) a, (zx) - z Ax - x

(QM3) Let x < y < z, then yz - zy < zlx - x

(M4.) Let x < yz z. ByOS x -y%(zx).

Ala. y'x < y < z and thus yx - y%(z%(yx)).

y A (y V X) - y A ((z-y)V x) - y A (z,((z-x)%y)) y(Z%(y%(y,(zX))))-

- y t (z%(yx)) - y,(y\(Z%(yX))) - y\(yX) - y A X - X.

flence the orthomodular law is verified.

Corollary to Theorem 13: If S has a greatest element 1 then S is an
orthornedular lattice.

Proof: S is the same as 1(1) and is hence an orthomodular lattice.
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Definition 3z A seuaL-orthomodular lattice is a meet semi-lattice in which
every principal ideal is an orthomodular lattice and which satisfies the
compatibility condition: (C) y _ x < z implies yxL - YJL xz
Theorem 14: (S,% , iA n ) s a semi-orthomodular lattice.

Proof: Only condition C needs to be verified:
x A yl M x%(x-(Zy)) - x~y - y-L by OES.

Every orthosubtraction (algebra) thus determines a semi-orthomodular
- lattice.

Theorem 15: Every semi-orthomodular lattice determines an orthosubtraction
*.., algebra where the subtraction is defined by y~x - (y A x)L.

y
Preof: The axioms need to be verified.

(Si) x,(yX) - Xz.(Y A z)1 - (x A (y A X) )1 -((X A y) A (x A y)
y yyx y x

x

(32) z(x% y) - %(x %y) (( A Y)I A X) -((x Ay) mx4 Y

(083) For simplicity denote z,(x-y) by w. w < z and thus w w A z.
(g (x-y))-% = wx-(w ^x)1  (V ^ zAK) -( AAK 1

I

u(W'10 (z Ax)') Avw-(z Az x aZ'X by th orthomodular law
3 2 z

The category of sesmi-orthmodular lattices is therefore identical to
* the cataery of orthosubtractiou algebras.

-~

E'.
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PART TWO: Applications to Hilbert Space

One of the main reasons for the interest in orthomodular lattices is
the work of Birkoff and Von Neumann in 1936. In studying quantum mechanics
they discovered that the distributive laws failed and thus the structure
was not Boolean. As an alternate structure the orthomodular lattice was
adopted. This was because of certain properties satisfied by Hilbert space,
a mathematical tool much used in the study of quantum mechanics and as a
basis of quantum logic. In this section the connection between orthosub-
traction algebra and Hilbert space shall be made.

A Hilbert space is a vector space with an inner product defined on it
which is complete. It may be finite dimensional or infinite dimensional.
Volumes have been written on Hilbert space and I will not repeat the results
here. A ggod book on Hilbert space is Introduction to Hilbert Space by
Berberian.

Of particular concern in the study of Hilbert space are the operators
on the space, specifically the projections and self-adjoint operators.
Sizce each operator determines a closed linear subspace (or subspace for
hert) these are also of interest.

Definition 4: (a) A closed linear subspace M of a Hilbert space H is a
subset of vectors which is closed under linear combinations and is closed
in the metric on H, that is:

x e H and y e M imply a x + B y e M

and if {x I is a sequence in M and lm x n eists then li 1 n e M.
n.a

*, (b) A liner mapping on a Hilbert space H is a mapping
T: H o H satisfying T(a x + 0 y) - aT(x) + T(y) for all x and y in H
sd a and 0 in the field of scalars. T is continuous if fTx I converges
to Tx whenever 2_ converges to x. A continuous linear mappifg is called
an operator. The adjoint of T, T*,is the operator satisfying (Txly)u(xlT*y)
for all x and y in H. T is said to be self-ad oint if T - T*. T is said
to be a projection if it is self-adjoint and TZ " T.

tach projection uniquely determines a subspace of H, the range of that
projection. Also, gives a subspace there is a unique projection of which
it is the range. Thus any results about the subspaces can be extended to
the projections and vice versa.

It is now time to define subtraction on L(H), the set of all closed

linear subspaces of the Hilbert space H.

Definition 5: If M and N are subspaces of H then MN = M(M fl N)'

.Lema 1: M/I N MN

Proof: Note that Mn N < N implies N _< (M A N)1

Let x c M M Ni . Thus x e M and x N1 and hence x c (MiAN) 1 .
Therefore x c MA(M rN)A - MHN and M n NJ M'N.

I!
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Theorem 16: M = MVM/N N)

Proof: MN -Mn(AM N)1  MA(M(MM f N) M- (Mn N)

7 ! -1 Theorem 17: N C M implies MN -M CN 1

Proof: MN -M(M n N) =Ml N

Definition 6: If N CM then N I M%N - M N1

* Note that this is similar to the compatibility condition, as N < M < H
implies that N1 M M fn N - M n N1 by Theorem 17.

m 04
Theorem 18: (L(H),%) satisfies OS1.

Proof: M%(NM) - M%(Nn (NAMi) qM(M a N A(N n M))
M HM ((M A N) A (M ̂  N)I) i = M M 01 = M A H - M.

Theorem 19: (L(H),% ) satisfies 0S2.

Proof: H'(M%N) - (H%N)' (CM n )L4MA %NM b ymty'M'M Mfl N%N(N%M) by symmetry.•MM

Theorem 20: (L(H),%) satisfies the orthomodular law.

Proof: Let M CN. Also M < MVN. Thus M < N ̂ (MV N) To prove
containment the other way note th-at N1 < H1 . Thus-N1 i m and (M V NI)
_ {z + ylz e M, y e NIl. Let x c N A(M-V-NJ), then x - z + y e N and hence
x - z - y e N. But y e N1 so that y - 0 and x - z. Therefore x e M.

Tkeetem 21: (L(H),N ) satisfies OS3.

Proof: Let D - CN(M\N), hence D CC and D - D I- DNM (D nM) I

- (D e C O\ M) - (DON(C A M))I v- D by compatibility. By DeMorgan's Law this

is equal to (D Y (C A M) )I D.

J. I
*- Since M%N < M it follows from the antitone property of that (C 1% M)C

= C%M < C%(M\N) - D. Thus the orthomodular law can be applied. Hence

(D' V (C IN M)') A% D - (C A M)' and therefore DM - (C\(MN))%M - C%M,

verifying 0S3.

It follows that (L(H),\) is an orthosubtraction algebra.

Attention is now turned to the set of projection operators on H, P(H).

Theorem 22: P(H) is a partially ordered set under P < Q if and only if
P =PQ -QP.

Proof: (a) P - P2 , thus P < P 4alexive).

(b) Suppose P < Q and Q < P, then P - PQ PQP p2Q PQ QP Q
(Antisymmetric).

. (c) Suppose P < Q and Q R, then P PQ PQR PR and thus
P < R (transitive),

--
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Lemma 2: If Pi is defined as the projection onto the null spaoe of P then
PP = PP - O.

Proof: Let x e H, then x - y +2 where y e Range (P) and'z e Null (P),
thus pL Px Ply 0, as y" Null (P). Also, PPlx -Pz 0 as z e Null (P).

Lemma 3: P , I-P.

Proof: Let x e H, then x = y + z where y e Range (P) and z e Null (P),
Px - z - (y+2)-y - x - y - Ix - Px - (I-P)x, therefore PI r-P.

Theorem 23: P(H) is orthocomplemented.

Proof: (a) Suppose Q < P, Q < P thus Q -PQ -PPQ OQ= 0
therefore gib {P,Fl} 0.

(b) Suppose P < R, p1 < R, then P P R - (I-P)R R -PR - R-P.
Since p1 - I - P it follows that I-P - R-P and hence I - R.

(C) " I -P- I -- (I-P) - P.

Theorem 24: (Foulis) glb fP,QI - P A Q - (P Q) Q.

Corollary 1: lub {P,QI - P q Q (P V Q4 )1

Corollary 2: P(H) is a lattice.

Theorem 25: P(H) is an orthosubtraction algebra where PQ is the projection
onto Range (P)%Range (Q).

Proof: OS1 through 0S3 are verified by noting that L(H) is an ortho-

subtraction algebra.

Corollary: P(H) is an orthomodular lattice.

Note that the definition of the orthosubtraction is generally unwieldy
to express in terms of composition of operators. If P and Q commute, though,
it is easier to express P A Q and PQ.

* Theorem 26: P A Q - PQ if and only if PQ - QP.

Proof: Suppose P A Q - PQ. Then also Q A P - QP. Since is commutative
P A Q - Q A P and hence PQ - QP.

q Suppose PQ , QP, then (P Q) Q - ((I-P)Q) Q - (Q-PQ) Q (I - Q + PQ)Q
- Q - Q2 "+ pQ2  PQ P AQ.

Theorem 27: P-Q - P - PQ if and only if PQ - QP.

Proof: PQ - PA (P A Q) P A (PQ) 1  pA (I - PQ) , P(I - PQ) as
P(I P-P_PQ -PPQ P -PQP -(I PQ)P. Thus PQ- P- P2 Q
= P -?Q.

To close this section the following are examples of orthosubtraction
*algebra as applied co Hilbert space:

-.
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2Example 1: Let H be Euclidean 2-space, X . The picture below shows the

locations of various subspaces associated with two subepaces M and N:

U The lattice diagram is below:

0

This is 0H6, the smallest nn-Beelean orthowidular lattice. To show
that it is non-distributive look at (M V W) A N and (M A N)V (M' % N).

( v th) A N- ItJ N 1- N

(MA N)V (MlAN) OvO 0

Thus (MV M) A N (M N) V (H'A N) and hence the lattice is non-
distributive.

3Example 2: Let H be uclidean 3-space, K . The picture below shows the
locations of various ub spese associated with two subspaces M and N.

Example 3: Let I C (2, coupleK 2-spsee. The lattiee diagram of P(H) is

0-

o

• C)
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CHAPTER III: MANUALS AND DASBAMS

PART ONE: Empirical Logic and Manuals

Wh at is a manual? Most people usually think of a manual. as a group
:. of instructions which tell one how to operate a piece of equipment. An

example of this is the ower's manual for an automobile or calculator.
Another type of manual might specify procedures for using a system. One
of the most important examples of this type of manual is the Reactor Plant
Manual, which is virtually a Bible for operations with naval reactors on
board nuclear submarines, surface ships, or prototype units. A third type
of manual, also encountered in the Navy, is one which describes the duties
a watchatander should perform and procedures for performing them. For
example, a seaman standing lookout on a destroyer can refer to NAVEDTRA
"Seaman" for an explanation of how to properly search for and report con-
tacts. Finally, anyone who has taken any lab science course is familiar
with laboratory manuals, which provide experiments to be performed and
procedures for performing them.

Loeking back at those four different types of manuals it is apparent
that there is a common quality that they all share. This is the fact that
they all tend to contain collections of operations, experiments, or tests
to be performed by the user. These tests have outcomes to be noted by the
experimenter. Furthermore, the performing of one test often interferes
with the performing of another. Per example, the lookout can search the
horizon for surface contats or he cam search the sky for air contacts but
he canot do both simultaneously.

In many respects this is similar to problems encountered in the study
of quantum mechanics. In the realm of the subatomic Heisenberg's Uncertainty
Principle interferes and makes it impossible to perform a grand canonical
operation in every case. The best that can be accomplished is to have a
collection of operations which may not be simultaneously performable and
which may interfere with each other.

It is the idea of a family of operations that have motivated Foulis
and Randall of the University of Massachusetts to pursue an operational
approach to empirical logic. Stated simply, empirical logic is an attempt
to model mathematically the picture of "reality" presented by our senses.
i.e., the outcomes of the experiments we perform. It avoids questions of

*i existence such s "Does this pen have an existence independent of my sen-
sation of it?" Instead it is concerned with data such as "When observed

* by the human eye this pen appears green."

The origins of empirical logic date back to 1846 and the British
mathematician George Boole. In searching for a mathematical foundation for
logic he invented the structure known as the Boolean algebra. A Boolean
algebra is an algebra with the operations of disjunction, conjunction, and
negation which correspond to the logical connective "or," "and," and "not."
It has the property that it satisfies the distributive laws, which state
that (A or 3) and C is equivalent to (A and C) or (B and C) and also (A

- and B) or C is equivalent to (A or C) and (B or C). This same structure
"" also serves as a model for set theory which has the operations of union,

intersection, and complement. In 1936 Komolgorov formalized probability
"" theory using Boolean algebra as a basis. The way this was accomplished was
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by defining a measure on the algebra which was disjointly additive, had a
value of 1 on the greatest element (corresponding to A or not A) and 0
on the least element (corresponding to A and not A). This today is used
as the basis for classical probability and statistics as taught in high
school or college (such as SH239 at the Naval Academy). As explained in
that course there is an experiment such as flipping a coin or rolling a die
which generates a sample space of outcomes. Events can be considered as
sets of outcomes. A probability function is defined on the sample space
which assigns a weight from 0 to 1 on each outcome and which sums to I on
all the outcomes. This weighting can be extended to the events by taking
the weight of an event to be the sum of all of the weights of the outcomes
contained in it.

*Example 1: Let the experiment consist of the rolling of a die. The sample
* space is fl,2,3,4,5,6} and a probability function could be one which assigns

weight 116 to each outcome. Take {2,4,61 to be an event, then the weight
of {2,4,61 is 1/2.

The methods of clasical statistics work well when there is just one
experiment. What happens, however, when there is more than one experiment?
Classical statistics does not work so well in this case and it is beneficial
to use "non-classical" statistics. It is because of this situation that
Foulis and Randall formulated the concept of a manual. This concept and
other related concepts will be rigorously mathematically defined later, but
first an intuitive explamation. As the ermaples at the beginning illustrated,
a manual is a collection of exp, riments or operations to obtain coutcomes.
In general there is no biggest operation containing the others. Each

foperation, however, is an experiment in the classical probability sense
with a sample space of outcomes and a related set of events. Outcomes from
different experiments which represent the same property are identified and
said to be the same outcome. In this case the operations can be said to

- overlap.

With these ideas in mind the mathematical definitions of Foulis and
Randall are now presented.

Definition 1:6 (a) A prenmaual 4 is a non-empty set of non-empty sets, E,F,G,

etc., where E - {a,b,c,...} is called an operation, test or experiment.

() &is irredundant if and only if E CF implies that E - F.

(e) a e E is called an outcome or atom.

(d) A a E is called an event.

(e) X U E is the set of all outcomes of

(f) The set of all events is denoted E (0i

() If A and B are events then A oc B if and nly if AV B E
where E e 1, and A A B is empty. A and B are called
operational complements.

(h) A op B if and only if there is a common operational
complement C with A oc C and C oc B. A and B are said
to be operationally perspective.
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(i) A B if and only if A A B -0 and Au B is an event.
A and B are said to be orthogonal.

The motivation for these definitions follows from the intuitive ideas.
Any good set of instructions should be irredundant for the sake of efficiency.
The outcomes are the consequences of the tests performed and are what will
be recorded in the operators log. Events are sets of outcomes as in classical
probability. Operational complements are just that, complements within an
operation. If A oc B and the operation is performed then either A or B but
not both will occur. When considered in the context of Hilbert spaces oc
can also be thought of as representing orthogonal complementation. Events
which are operationally perspective confirm one another, that is if A oc C
and B oc C then when A occurs C does not and hence if the operation BY C
were performed then B would occur. The term arises from projective geometry
and in the context of Hilbert space can be interpreted as "span the same
subspace." Finally, if A 1 B then if A occurs B does not and the term again is
motivated by Hilbert space.

Condition M: A op B and B oc C implies A oc C.

Definition 2: A manual is an irredundant premanual which satisfies Condition
M.

The requirement for Condition M is desirable by thinking of a manual as
a set of instructions. If A confirms B and B rejects C it makes sense that A
should reject C. Condition M requires that there be a test which directly
establishes the fact that A rejects C.

This idea of a manual does indeed fit in with the idea of a manual as
explained previously.

II
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PART TWO: Application of Subtraction Algebra to Maunuals

In Chapter I subtraction algebras were axiomatically developed and
: mshown to be identical to semi-Boolean algebras. Semi-Boolean algebras are

useful in that they have most of the properties of Boolean algebras but are
not as restrictive as there is not, in general, a greatest element. The
application of this structure in either subtraction or semi-Boolean form
shall be illustrated in this section.

Definition 3: (a) A seail-Boolean (subtraction) algebra (S,\) is atomic
f if and only if there exists a subset A C S of atoms satisfying two conditions:

Al For all non-zero x in S there exists a e A with a < x.

A2 For all x S 5, a . A, x < a implies x - 0 or x - a.

(b) The algebra is deminated if and only if there exists
a subset K 4 S of maximal elements satisfying these
twe eenditions:

Dl For x E S there exists e C M with x < e.

D2 For all x e S, e e M if e < x then e - x.

These awe terms from lattice theory. In general, an atom is a minimal
non-zero element. If every element has at least one atom contained in it
then the algebra is atomLc. In a Boolean algebra these properties imply
that every element is the join of all atoms beneath it. When this is the
caee then the algebra is atemastic. In a semL-Boolean algebra it is again
true that atomic implies atouatc. It is net generally true for lattices.

* For example, in the lattice of natural nmbers under the usual order 0 is
at least element and 1 the only atom. Al and A2 are true but no element
except 1 is a join of atoms.

Given a dominated atomic semi-Boolean algebra other relations can be

defined,

Definition 4: (a) x oc y if amd only if xA y - 0 and xVy - a where a e M.

(b) x ep y if ad only if there exists z such that x oc z
Sad z oc y.

(c) x ly if ad only 4f x P y - 0 and x V y exists.

iemee x oc y memos that x ad y are relative complements within some
Boolean principal ideal generated by a imnimal element or operation. We call
x aed y operational complemenas. Siace x may be dominated by more than one
minlaal element it is possible that x may have distinct operational complements.
The relation op, operational perspectivity sysbolises this fact. The moti-
vation of the term orthogonal will be evident later.

eLama 1: (a) x e y if and only if there exists a c Mvith x <e, y1 e
and x - e*%y.

(b) x op y if and only if there exist e and f in M with x< e,
y j f, and e'x - f'y

. ..F . . . ... ..



r

30

This lemma allows expression of the relations in terms of subtraction.

Theorem 1: a is an irredundant premanual if and only if the event
structure E(W) is a dominated atomic semi-Boolean algebra.

Proof: (a) Let 0-be an irredundant premanual and define subtraction
on E(.) :

AN- [a C Ala i B)
The axiom need to be verified.

(Sl) A%(BA) - fa c Ala j (BA)l - {a e Ala j B or a e A)
.fa e A} - A.

(S2) A%(AB) f (a e Ala j (AB)) - {a e Ala J A or
a e B1 f a e Ala £ B) - A ^'iB - B%(B%A)

() (A)\C - fa e A\Bla i C) - fa c Ala j B and a j C)
- (a c Ala i C and a i B - (A%C)%B.

(Al) Let A e E(a)(A 0 0). Since A is an event there is
e outcme a € A, thus (a) C A.

(A2) Suppoe A fal, then either (a) -A or A=.

(Dl) Let A be am event, then there exists E £ d with
A al.

(D2) Suppose c c A. By irredundance E - A. Therefore
E(d) is a dominated atomic semi-Boolean algebra.

(b) Let (S, ", A, K) be a dominated atomic semi-Boolean
algebra. For each elemnt x form A , the set of atoms
beneath x : A - (a e Ala < x}. Fof all ee M.A is a
collection ofxatoms. Take- - (A I indexed overeM. By
Al A in non-empty and by D2 if Ae C A then A - A.Therefore t is an irredundant preianua. e

Theorem 2: If a is an irredundent premanual and E(Q) is the associated
event structure then the relation of oc on E(M is the same whether considered
as an event structure or as a DASIA.

:4 Proof: Take E(.) as an event structure and suppose A oc B. A F B 0
md A V B - E implies that A - E%3 and thus A oc B in the sense of a DASBA.
The converse is also true.

From this result the relation of op cam also be seen to be the same in
the irredmadant premanual sense as in a DASIA because it is derived from the

*I oc relation. The following result also holds.

Theorem 3: d is a manual if and only if E(d) is a dominated atomic semi-
Boolean algebra satisfying Condition M (a DASBAM).

Proof: Since the relations of oc and op in each structure correspond
Condition M must also correspond since it is impressed only in terms of oc
and op.

4



This last theorem states the major difference between the viewpoint
of Abbott and the Naval Academy group and that of Foulis and Randall and
the Amherst group. In Amherst, the manual is studied mainly at the top
(the operations) and the bottom (the outcomes). In Annapolis, the entireU semi-Boolean event structure is considered and while the operations and
atoms are important it is not to the exclusion of the rest of the structure.

. By thinking in terms of a DASBAM the idea is one of an algebraic structure
whereas the idea of a manual suggests a set theoretic approach.

,;_

p
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PART THREE: Properties and Types of DASBAMs.

The simplest type of DASBAM is one like Example 1 in Part One of this
chapter, the set of events of a classical sample space. In this example,
the atoms are the singleton events corresponding to the outcomes and the
set of maimal elements has only one member, corresponding to the experi-
ment. Since the op relation is trivial Condition M holds automatically.
This type of DASBAM where there is only one operation is called a classical
DASIAM. It is a Boolean algebra.

Almost as simple as a classical DASBAM is a semi-classical DASBAM,
defined by e\f - e whenever e s M, f e M, and e 0i f. -The tests do not
overlap each other, having only 0 in common. If each test is atomic and
dominated, then so is the whole algebra. To see that Condition M holds
note that the only non-trivial op pairs occur among the tests and the
couma complement is 0. Thus if e op f and f oc x then x - 0 and hence
e oc x.

Oher types of DASSAMs are not ao easy to explain. There are, however,
som theorem which determine whether or not a given semi-Boolean algebra is
a DIA SSM.

Theorem 4: If a DASSA has only two tests it satisfies Condition M.

Proof: Let S be a DASBA with X - {e,f}. Suppose x op y. There are
two poseibilities, either x - y or else x 0 y. If x - y then y oc z implies
x oe z trivially. If x 0 y then there is an element z with x oc z and
z oc y. Without loss of generality assum z - e.x and z - fy. a< e and
z < f, hence z < a A f. Sftme f'e m f-(eqf) it follows by the antitone law

* that f-e < f'z - y. This y 2 ef and hence its only complement is z. Again
y oc z implies x os z.

Por the next types of DASBAM it is necessary to introduce the concept
of ghosting.7

Definition 5: Let P be a partially ordered set, S, a subset of P, and Q a
pertially ordered set with lower bound o. Define the ghosting of S within
P by Q as follows: Form S x Q - {(s,q)Is c S and q c Q) and let (s,q) <
(s',q') if and only if s < s and q < q'. Identify s c S with (s, o) and
p e PS with (p,o). The new structure is a partially ordered set.

.bat is being dome is the adjoining of a copy of Q with 0 at s for every
point a e S. This is similar to m out-of-tune TV picture of P, which is
known as a ghost. We will now specialize this idea for application to semi-
Moleen algebras.

Def:jttion 6: Let S be a DASBA and consider the series of ghostings of 1(e)
within S by 32 where e runs over the dominating set. The resulting structure
is called the dacification of S and is denoted S+ 5 If I(e) is one such

Inal principal ideal then let e+ be the atom of B by which I(e) is
#h.ted. The set I(e) X e+ - {(x,e+)Ix < el is deflied to be the ghost of
I(e).

At this point it is useful to illustrate these terms via an example.
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Example 2: Let S be S({x,y-), the free subtraction algebra on two generators.
S is a DASBAM. Below are shown S and S+ .

I~

000

.iure 1

In the partial order dia1-am the Shost of I(y) is the set {(o,y+),
(x A y, y+), (y 'y+), (y, y+)}.

IT say dweification the ghosts of different tests do not overlap since
e+ - f+ implies e n f. The atoms of the dacification are of the form (a,o)
or (o, e&) where a is an atom of S. The tests are of the form (e, e+ ) where
e is a test of S.

Lame 2: x oe y in S+ if and only if exactly one of the two is in S and
the other in a ghest.

Proof: (a, e+).x M (ex , o) or (ex 1 , eI). If the first is true
then x is in the ghost of "I(eJ and y is in-S. If che second is true then x
is in S sad y is in the ghost of I(e).

La= 3: In S + if x ee y, y oe z, and z oc w then either x - z or y - w.

Proof: Suppose x is in a ghost, then x - (x1 , e
+) and y - (ex ,o).

Since y oc z then z is in a ghost and z - (f-.(exl), f+) where f c M. Hence
w - (f%(f,(aex)),&) - (ae.x 13 o) - y.

S e x is in S, then y - (ex, e) ad z - (a. e )%y - (e%(ex), e\ e)
- (x,,) = x.

Theorem 5: If S is a DAS]k then $+ is a DASRAM.

Proof: It merely needs to be sham that S+ satisfies Condition M. Let
Sx op z sad z oc w. By definition of op there exists y c S+ withx oc y and

y oc z. There are two cases: (a) x - z implies x oc w, thus Condition M
holds; (b) y - w implies x oc w, thus Condition M holds.

4 The process of dacification produces a DASBAM'from a DASBA. The next
process produces a new DASIAM from two DASBAMs.

4i
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Theorem 6: If S and T are DASBAMs then S x T is a DASBAM?

Proof: From the remarks following Definition 9 of Chapter I, S X T
is a semi-Boolean algebra. Al, A2, Dl, D2, and Condition M must nov be
verified.

For the atoms in the ghosting look at the set f(a,o)la an atom of S)
{(o,b)lb an atom of T).

Al: For all x - (s,t) 0 (o,o) either there exists a e A with a < s
or if s - o then there exists b e AT with b < t. Thus (a,o) _< (sit) or
(ob) < (st).

A2: Suppose x - (st) < (a,o) then s < a and t - a. Hence s = 4 or
s o and x - (a,o) or (o,o). Likewise x -- (s,t) < (ob) implies x - (o,b)
or (oo).

Pr the set of imtial elemats consider the set { (e,f)le M and
f MT}.

Dl: Let x - (st), then there exists e e M with s < e and f e MT
with t _< f, thus (st) < (e,f).

D2: Sappoem (ef) < (st), then e < s and f < t. Hence e - s and
f -t, thus (e,f) - (s,t).

Finally, since subtraction is defined coordinatewise so are the
relations of ec and op, that is

(st) os (s',t') if and only if (s,t) - (e,f)%(s',t')

if and only if s es' and t - ft ° if and only if s oc s' and t oct'.

Likewise (s,t) op (st') if and only if s op s' and t op t'.

H: Deuce (st) op (Wt') and (si,t') oc (s",t") implids s op s',
c si t t op t', t' oc t". ece a oc s" and t oc t". Therefore (st) oc

-- (s",tt").

Theorem 7: If S is a free subtraction algebra with a finite set of generators
fe,fg,...} the S is a DASM.1O

Proof: Since S is finite it is atomic. The set of generators is the
dominating set. Finally, note that S is a dacification since given a test
a fom the element (e~f)g..mx. This element is contained in e alone.
I(*) is isomorphic to I(e~x) X I(x).

This section has given some methods for recognizing DASBAMd and for
constructing new DASNAMs. In the next section some examples will be
presented.

"/ 1
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PART FOUR: Examples of DASBAMs and Manuals

Example 3: Let B be a Boolean algebra whi.ch has a greatest element I and
is atomic. The oc relation is merely complementation and the op relation
is just equality, hence Condition M holds. This is a classical DASBAM.

Example 4: Let d1 - {fa,b}, {c,d}, {e,f}}. Since there is no overlap
between operations d is a semiclao.ical umnual and E(d) is a semi-classical
DASBAM. The partial order diagram is below:

3 ~~E(O) e1 (A

PtSu"e 2

Example 5: Let S be the free subtraction algebra on two generators, x and y.
Since there are only two tests S is a DASBAM. The partial order diagram is
Figure 1 of Chapter I.

Example 6: Let S be as shown below. S is a DASBA. However, by looking at
x, z, and w as in the diagram it is easy to note that x op z and z oc w but
there is no operation so that x ee w.

0l 0
Pigure 3

Example 7: Let S be as in Example 5 and form the direct product S X B2 ' The
initial and final partial order diagrams are as in Figure 1.

Example 8: Let S be as in Example 5 and form S x T whereT is as shown below.
This direct product is a DASSAM.

.XT

T-

Figure 4

V
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Example 9: Let S be as in Example 4 and form the dacification of S, S+.
The partial order diagram is given below.

'-. (o, ))

P1&Pue 5

Althhosg S was not a DMASM S+ is.

asmuple 10: (The Leueat's Muaual) 1 1

Let I - (fa,b,cl, fc,d,el, {e,f,a)}. The pArtial order diagram of E(O).
is below.

By lspectie this is a dacifiatio of ( - {fa,c}, {ce. fe,al} and
thus E(O) is a US*M.

This example is known as the leekout's manual because it arises from a
situation in navigation. Leek at Figave 7:

Fig 7

;4
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A vessel is steaming in the open ocean with three lookouts posted; a
port lookout, a starboard lookout, and an after lookout. Each lookout can
make reports as listed below:

Post Lookout a - contact in sector I
b - no contact visible
c - contact in sector II

Starboard Lookout a - contact in sector I
f - no contact visible
e - contact in sector III

After Lookout c - contact in sector II
d - no contact visible
a - contact in sector III

Each lookout represents a test abailable to the Officer of the Deck with
outcomes as above. The collection of tests forms a manual and the event
structure is a DASUAM.

Example 12: Let H be a Hilbert apace. Take ( to be the set of all orthonormal
*bases of H. The atoms are the unit vectors of H and the events are sets of

orthogonal unit vectors.

Suppose that A I B as events, than AU B is a subset of an orthonormal
basis of H. Hene ai b for all a e A and b e B and A ± B as sets of vectors
in a Hilbert space. Therefore I in the DASBAM and I in the Hilbert spaceU correspond and the term "orthogonal" is Justified.

Let A oc B, then A ± B and A i B. Also A UB is an orthonormal basis.
Hence (Span (A))I - Span (B) and A and B can be thought of as orthogonal
complements. Furthermore, since (Span (A))1 is unique, Span (C) - Span (B)
whenever C oc A. Thus C op B is the same as the relation "Spans the same

U subspace as .

The verification of Condition M in this case is now easy. A op B and
B oc C imply that Span (A) - Span (B) and Span (B) - (Span (C))I . Thus
Span (A) - (Span (C)) and therefore A oc C.

pe

p
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CHAPTER IV: THE OP LOGIC

PART ONE: Properties of the OP Logic

In the last chapter the requirements for a semi-Boolean algebra to
be atomic and dominated made sense when considering DASBAMs and manuals
for use in empirical logic. The requirement for Condition M might have
less obvious a motivation.

Theorem 1: If Condition M holds then the op relation is transitive.

Proof: Let x op y and y op z. y op z implies there exists w such
that y oc w and z oc w. By Condition Mx oc w, thus w is a common
complemet of x and z. Therefore x op z. -

Theorem 2: If Condition M holds then op is an equivalence relation.

Proof: (1) x op x is obvious (Reflexive)

(2) x op y if and only if y op x is true
bty s~mmtry of tke definition of op. (Sy-metric)

(3) x op y and y op z if and only if
x op z wos proved in Theorem 1. (Transitive)

Sinee a DASUAM is an algebraic structure aud op is an equivalence
relation it makes sense to investigate the quotient structure of the algebra
modulo this equivalence relation. This will be called the op logic of the
DASIAM.

To goet a feel for what is happening in terms of the structure of the
DASIAM the following results will be established.

Lemaa 1: If x op y via comn complement z where x < e, y < f, and
ex - z = fy the following are true.

(a) z < eAf

W b)ef < x and f-e < y

(c) XA y eA f
X A# Y^ (0 - \ f)%X i

(e) x~y - ef and y~x = f~e

Proof: (a) Since z - e-x and e-x < e, it follows that z < e. Also
z - fy and f~y < f imply that z < f. Hence z < e ̂  f.

(b) z < • A f. Thus by the antitone law e%(e A f) < e'z.

Therefore ef < x. Without loss of generality f'-e < y.

(c) x < a and y • f. Thus x o y • e A f.

(d) First (xA y)A (z) - (x\ (e.x))Ay - oAy - o. Second
(xA y)V (Z) - ((e-xP4x)A-((fy) Vy) "e A f. Therefore
z and x A y are relative complements in I(e A f) and hence
x A y (e A f),z.
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(e) e - (e-f)V(e A f)P (x y) zv(ef) where the terms are
pairwise disjoint. Hence e'z - e%(e%x) - x - (e~f)V (xA y).
Thus x-y - x,(x \ y) - ef and without loss of generality
y-x - fe.

These facts are illustrated in Figure 1.

e

m, 0

-. 1iF se 1

i ,i,. x op y their common complement lies in I(e Af). For this reason
I(eA f) is called the axis of perspectivity.

The op-logic shall nov be defined as a quotient structure of the DASBAM
modulo the op relation.

Definition 1: (a) x - fyly op x)

(b) S - GxJx e S) is the op-logic of the DASBAM S.

It is desirable to determine what sort of structure the logic has and
what properties it inherits from the DASBAM. To begin a partial order relation
is defined.

Definition 2: x < y if and only if for all x1 c x there exists yl e y with
- Xl -< Yl"

Li 2: If x op x2 ad there exists e e M vith x, e and x2  e e then
X1 M 2 .

Proof: x oc e,x1, thus x2 oc ex 1. Hence fx - ex and x2V(e'x1) - f
where f eM. lince x2 < e and *\1l< e it follows tat f < e. Thus f -
Since relative complements are unique x1 - x2.

With this lemma it can now be established that < is a partial order re-
lation on S.
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Theorem 3: (S, <) is a partially ordered set.

Proof: (1) x < x is clear from the definition (Reflexive)
(2) Suppose x < y and y < x. Then for

all xl e I there exists y1 e y with

x1< Y1 " But for Yl e y there exists

x2 c x withY < x2. Thus x< x2.

But Xl op x2 and thus xl - x2 -Y1 "

Therefore x = y. (Anti-syuetric)

(3) Suppose x < y and y < z. For all

xI e x there is y Icy with x1 <y.

Also since y <z there exists z1 e z

WIh Yz.S <  Beaee x<z 1 and

x < z. (Transitive)

This partial order is essentially the same partial order from the
DASBAM lifted to the logic. The next theorem gives an alternate definition
of this order.

Theorem 4: x < y if and only if there exist x1 £ x and yl e y with
i Xl YI"xl -y_

Proof: Suppose x < y, them the result follows obviously from Definition

2.

Suppose there eKist xI e x and yl e ywith x 1 <yl. Let x2 op xl, it

must be shown that there exists Y2 c y with x2 I Y2 " Since xI op x2 there

exist e and f with e-x, W fx 2. By the anitone law e-y1 < e'xI , thus

ey I < fx 2 . Let Y2 - f-(ey). By the antitone law f(f'x2) < f%(eyl).

Bt x2 < f and this x2 - f A x2 - f-(fx 2) < Y2 " Als e'y I - f-y2' so

that Y. op Y2 . Thus for all x2 e x there is y2  y y with x2 Y2 and hence

x < y.

This second definition of the Partial order is the easier of the two
to use when checking whether or not x < y.

The next step is to define an orthecouplementation on S.

Definition 3: x ± - fYly oc x)

From Condition M it doesn't matter which x c x is chosen for the
definition.

4
. Theorem 3: e S.[

4
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Proof: It must be shown that x - y for some y. Let yl s x t and

Y2 e x'. Thus yl oc x and Y2 oc x. Therefore yl op Y2 " Also, suppose

Yl op Y2 and yl E x . Then yl oc x and by Condition M, Y2 oc x. Hence

Y2Y 6 x and y - x.

Theorem 6: (x) -x.

Proof: (x ) -y where y oc x.

y - {zlz oc y) and thus z oc y and y oc x. Hence z op x and

Theorem 7: (S, <) is bounded above and below.

Proof: (above) Let M- T. For all x S, and for all xl e x there

is e e 1with x1 < e. Eenee x< i.

(below) Since 0 < x for all x in S it follows that 0< x
for all x cS.

Theorem 8: 0 is the greatest lower bound of x and x

Proof: Suppose there exists5 with z < x and z < x , then for all-I _
z e z the exs e c l x with z xl . y and xoc y

Hence zI < x l p y l , But YAX1 - 0. Thus z I - 0 and z

Theorem 9: 1 is the least upper bound of x and x

Proof: Suppose there exists z with x< z and x < z. For all x1 CX

there exists z 1 e z with x1 < z 1 < e where e e M. Hence e-z 1 < e~xll e.

X I < z implies that there exists z2 e zwith esx 1  z2 < e and thus

e*-z4<5 2 . Hence ez 1  (ez ). z 2 - 0 and z1 -e, therefore z -

Prom the last 5 theorems it follows that (0, <, ±, 0, 1) is a bounded
orthocomplemanted partially ordered set. In general, however, least upper
botmds or greatest lower bounds do not exist for a pair of elements. This

factwdll be illustrated in the examples in Part Two.

Lame 3: x < y implies lXI iYl where lXI denotes the number of elements
of 1. '

Proof: Let x < y. For each x c x there is at least one y e y such
i .  that x < y. Define--Yx - {Y c x < y}. Y is non-empty. By the Axiom of

tht <y.Dein Yx (y- I
Choice a single y - y(x) can be chosen from Y for each x. The resulting

x
* map x o y(x) is a mapping from x to y. It remains to be shown that this

map is one-to-one. Let x1, x2 e x and suppose y(x1) 
= y(x2). Then

x, < y(xI ) and x2 < y(xl) and thus x, - x2 by Lemma 2. Since there is an

injection from x to y it follows that 7l1 _ ly.
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This result shows that the cosets get larger in magnitude as one gets
. higher in the logic. Also, by Leuma 2 the equivalence classes are anti-

chaims as no two elements of a class are even contained in the same maximal
element.

Lema 4: x1 op x2 and x1  y implies x2  y.

Proof: Let xl_± y, then y_< e x1 where x1 V y_ e. By Condition M,

1 oc e~x1 implies x2 oc e%11. Thus there exists f e M with (ex 1 ) Vx 2 - f

and (ex 1 ) Ax 2 ' 0.

However, y C ex 1 implies y ^ x2< (eax 1 ) A x2 - 0' thus y A x2 - 0.

Also y V x2 < (e-x1)Vx 2 - f. Therefore yV x2 exists and hence y I x 2.

Lema 5: x 1 op x2 aad x1  y implies xV y op x2 V y.

Pref: Since op respects _ it follows that x2 1 y and that x2 V y

exists. Let x 1 V y 1 a and x 2 V y < f. Then y.1 ex 1 and y < fx,.

• - x1 4K'*(.x1) - x 1 Vy * [(ex 1 )-y] and

f =x 2 (f x2 ) - x2 Vy 4 (f. x 2)%y]

where denotes the fact that the elements are disjoint.

e% (x* y) - (e X1).y = (f% x 2 ) %y - f%(x 2 I Y)

Hence x1 V y op x2 V y.

Theorem 10: x1 op x2 y op Y2  X y implies that x1 V y  op x 2
1 im2ie x2Vy22..l Y

Proof: By Lem5x1  Yopx 2 Vy. Also x2 V y op x2  Y2 for

the same reason. Since op is transitive x1 V Y1 op x2 V Y2 "

By Theorem 10 and Lemma 4 1 has the substitution property with respect
to op, thus the i relation can be lifted to the op logic.'4

Definition 4: x i y if and only if there exist x1 c x and yl e ywith
xl yl.

Again, this is the some relation from the DASBAM lifted to the logic.

La 6: If x i - thea 0 is the greatest lower bound for x and y.

Proof: Suppose z < _x and z < y, then for all z e z there exist xl E x

and yl c y with z1  x1and z _ Yl. Hence z1 .x1 ^ Y-O 0 and thus z -O.

4La 7: x L y if and oly if x < y.

Proof: Let x i y, then x1 V y1 exists for all x1 e xand yl e y. Thus

x e'y 1 for some test a and x < ey 1 - y

.o
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Conversely, suppose x y y. Then for all x1 e x there exists Y£ y
and e-y 1 8 - with x-1 < 'y 1. Thus x1 and y1 have an upper bound and

Ix 1 AYl = 0. Therefore x1  yl, and T. - y.

Lesma 8: x V z op yY z, x ± z. and y& z implies x op y.

Proof: x V z op y V z implies that there exist e, f e M with
e%(x V--- - fi (yV z) - w. Hence w < eA f. Also z < x V z < e and

* z < y V z < f, thus z < e#N f. There-fore w V z < e A-f. e --v ifx#
and f - vi y 4 z. Furthermore, x A(w V z) - y W(V V z) - 0. Therefore
ex - w V z - fNy and hence x op y.

Theorem 11: x1 op x2, yl op Y2 .x1 :
- yl, x2 

< Y2 implies yfpxl op y2\x 2.

Proof: Y1 op Y2 implies ey 1 = fY2 = z. e = Yj  V z and f - Y2 V z.

Y, a x1 V(Yj"xl) and Y2 - x2 V(Yx 2 )" Thus - x, V(ylxl) V z and

f - x2 v(Y2x 2 )V z. isuce xI oc (Y1 Xl) V z ad x2 oc (ye x 2) V z. Since

: 1 op x2, x1 ec (yjx2) V z and thus (y1%xl) V z op (yj.x 2 ) V z. By Lema 8

it follows that (yj'xl) op (yPx 2 ).

Definition 5: y-x - y.x.

by the preceding remarks this msbtaction is well defined. Note that
S.it is only a partial subtraction operation since it is only defined when

x <y.

Lem9: 7X<y

Proof: Follows from Ix < y.

* Theorem 12: The greatest lower bound of x and yxx is 0.

Preef: Suppose z < x and z y-.x, then for all z e z there exists

x1 C 3E and y 2%X2 e y' with zi < xi oad Z1 < Y2%x 2. Hence zi . xAy 2 x

Since op respects -- T I a nx2 ad thus x, A Y X2 ) 
= 0. Therefore z - 0.

The cerresponding result for upper bounds does not hold, as will be
shown later.

Definition 6: If x i y then x y = z'y. x 0 y is called the ortho-
9~l sum of x and 7.

Dy Theoreu 10 this is well defined. As with the subtraction operation
the orthogomal sum is only a partial operation.

Lema 10: If x!Y, thenx < 4Y

Proof: Let x1 e x. Then there exists y1 e y with x1 L yl. Hence

xI Vy, exists andx<x1 V Y1. Therere 1 Tj
< V7 1 -x 0 "x
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Loas 11: -xLy implies (x0 y)- Y.

Proof: Ptm Lema 10 the subtraction is defined. (x * y)-
- (*T ( Xy . Since x A y - 0j(xy)%x - y and thus Txx-Yx my.
Therefore 0 y* -.Y -.

Lei. 12: i<y Imlies (%)--y.

Proo: Let x < y, tia x V(y~x)-y. Also XA(YX) 0. Hence the
orthogoual sm of I-aud T ezists and Y (y) .0. e

Theorem 13: If x i y then x @ y is a umnmm upper bound for x and y.
Proof: By Lemm10 x 1 y is an upper bound. Suppose z is an upper

bound withT<T F Por all x c Y there exists z, e E and y 1 C

with x1 < 21 x1 V yl T i by the astitone law of subtraction

(xi V yl)%Zl _(xi V y1 )-x_ 1  z V Y, and hence (x1 V yl) z 1  yl1 
-

1 V y1.

y< T 1Wliee thege mKistO Z2 e T eeth yl < z2. Thus (xi Vy l) z1 <yl 
< z2

Because 21 A" (x1 V yl)71 1 and X2 OF z1, it follow* from Lemma 4 that

.2 _1 (x1 V yl
)-'z1. teMe [(x.1V y,)%z]Az 2 - (x1 V yl)zl - 0. Thus

I  -7-_- "fh j Y T. Therefore i -z.

In the general case i 0 f is not a least upper bound, however.

It is new appropriate to ntroduce the concept of an associative
orthelgebra is developed by Patricia Frazer Lock when she was a student
of Foulls sad lde1l.

.Definition 7: associative orthoalgebra is a set L with a binary relation
j , a partial binary operation * defined if and only if x _ y, an ortho-
complemtatioa " and cesatants 0 and 1 satisfying the following properties:

(a) x y if andml ly if y I x ad x * y y O x

() z IOmdx O-x'
(e) xI x I a x x = 1

(d) xI (x1  S y) lIell y- 0
(a) x I (x * y) Implies x- 0
(f) x I yiplies x I(x & y) sad y -x (z y)

(egtbemodular identity).

(S) x I y and z (x * y) implies y L Z and x L (y * z) and
x * (y 0 3)- (x a 7) S.z (Aseociative Law)

Theorem 13: If S is a DASNhA then the op logic (F, <, 19 $.9., soT) isan
associative orthoelgebra.

fl : It is necessary to veariy the anioms.

(a) if if sad only If f i i due to the syumetry of- in Sad also 4 C- * - by the coutativity of In S.
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(b) 7 Uas x 1 0 for all x e S. Alsox * O =T-x.

(c) f I x as x -ex and x-ex. x - xv(ex) -= t

(d) Suppose Y 1 1 9 7), then x . (ex) V y. Hence y - 0 and
Ty mU.

(e) SupposeI L (x ), then x I x Vy and x -0. Thus
-mU - - J. -

" (f) Let x _y. < *Y implies ( y) < _x , thus-£I

3 (x + j). Alsoy -xV(e-,(xVy)) 0e(x -Vy)'

= x l (x * since S is orthomodular.

(g) Supposex_ iy andz (x y). Then z x Vy and thus

z i y. xV(yV z) exists and xA(y Vz) - (xA y)V(xA z) -0,
Ihu x± (yVz). Hence z yandx± (i * ).

Piallyx *(y a Z)-xVyVz- (x * y) G Z.

This gi-ves the structure of the op logic of any general DASBAM.

Thbra-em 14: (P. Lock) If (L, i, @ 9 1 0, 1) is anm associative orthoalgebra
tQ it is the op logic of some DASNAM.

This 1&&t theorem ill net be proved here, but it will be used later.

The asict section vwil present some examples of op logics arising from
DASMs prese ted In Part Pour of Chpter III. Many of these satisfy other
special cionitiom uhich do not hold In general.

I--"

4
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PART TWO: Examples of OP Logics

In this part som examples of op logics will be described. These vll
mostly arise froa DASBANs described in Part Four of Chapter 11I.

Example 1: Let S be a classical DASSAM (that Is, a Boolean algebra). There
is only one operation and therefore the relations of oc and op are trivially
the complemos~statin and equality, respectively. The op logic is identical
to the DASA M.

Example 2: Let S be a semiclaseical DASIAM. The only non-trivial op pairs
are among the maximl elemsnts. The structure of S is almost the same as that
of S except that all of the tests are squeezed together at the top, as
illustrated below in Figre 2.

PIgure 2

Thks structure is not Boolem and non-modular since it contains D5 (circled)
as a eublattice. It is ortheodular, though, as wee proved in Part One.

xample 3: Let S ba de soemlaesdial DA M sim below In Figure 3(a).

F14i, 3(a)

The op logic is som eLew I& Pqie 3(b).

II

Figure 3(b)
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This structure is an orthomodular lattice, specifically OM6.

Example 4: Let S be the free subtraction algebia on two generators. TheR op logic is shown in Figire 4.

" PF~gure 4

ThIs structure is the Boolean algebra B4 . Whenever the op logic of a
DAS -M is a Boolean algebra the DASBIAN is called a Boolean DASBAM.

HM.Ne 5: Let S be as in Rsmple 4 and form S +  the dacification of S.
The op-logic is show In FiPgue 5.

Fsgue 5

This structure is also an orthomodular lattice, the direct product of
OM6 and B2. The picture in Figure 5 is the seie picture that appeared in
Scientific American of October 1981 in the article "Quantum Logics" by 3
Hugh.". In that article the diagram arose from considering subspaces in ,
luclidees 3-space. In the uerne way this diagram can be interpreted as
representing the op-loie of the mamual f{x,yz}, fuv,z)}. These represent
orthomeal bases of u by letting x - [1,0,0], y - [0,1,01, z - [0,0,1],
u - [//2, /V/2, 01, and v = [-/12, /212, 0]. iTae subspace spanned by
x amd y is the seme as that spanned by u and v.

Example 6: Let S be the Lookout's DASSAM. The partial order diagram of S

is shoe in Figure 6.

Figurp 6
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Where a ( fa)F--fb

c - c)

d- fd)

a - fel
T - {f}

ab - fabde} -e

ac - facl

bc - (bcef} I ef

ed - fcd,af}I

To-- feel
- (efbc} = bc

7- {af,.cd) -d

To each equivalence class can be astigned a statement which corresponds
to the physical situation. These are listed below:

a - estaet in sector I

b as *eotact to port

a sentact in sector 1I

d - s. centact to starboard

- en-tset in sector III
f - me cotact a"term

ab - no contact in sector II

ae - contact in sector I or II

be - no cestact in seer I
ad - no contact in sector III

s_ - aestact in sector II or III

se - contact in sector I or III

I t- uek posted

0 - ateh secured

These interpretations make sense in term of the physical situation.
The op relation here preserves physical meaning.

* s7 Let I be a Hilbert space and 11 to be the Hilbert manual as defined
n Ile 12 of Chapter 1II. As explained there each op equivalence class
cam be identified with a subspace of H. Therefore the op logic is isomorphic
to L (H), the lattice of subspaces of H, The order on the logic is the sme
as on -.L(H). For any Hilbert manual the op logic is thus an orthomodular
lattice.

- --
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Take H to be C Complex 2-space The partial order diagram of the
op logic is show in Figure 7.

0 1

.Pgwe 7

I

l_ _ _ _ _ __ _ _ ~
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CHAPTER V: RING DASBAMs

The previous discussions of manuals and DASBAMs were motivated by
considerations of empirical logic. Many of the examples arose from
applications to empirical science. The examples and results in this
chapter, on the other hand come from an area which seems to be unrelated
to empirical logic. This is the area of abstract algebra and specifically
ring theory.

PART ONE: Boolean Rings

Definition 1: A Boolean ring (R, +, ) is a ring satisfying these two
identities for all x e R.

2
311 x 2 x (Idempotent law)

x + x - 0 (Caracteristic 2)

Prom these two seemingly innocuous properties much structure can be
derived.

Lens 1: If R is a Boolean ring then it is coumutative, that is xy = yx
for all x and y.

2 2 2Pr of: (x + y) - (x + y)(x + y) - x + yx + xy + y (x + y)
+ yx + xy. But by the ideipotent lw (x + y)2 . x + y. Thus yx -xy 0.

Heace yx -- xy - xy.

Theorem 1: If R is a Boolean ring then it is a subtraction algebra under
xy= x + xy.

Preef: As in previous chapters the axioms shall be verified.
2

(5l) x,(y-x) - x%(y + yx) - x + xy + xy = x +xy + xy - x.
2 2(2) x%(xy) -x(x +xy) -x + x +xy-x+x+xy - xy

= yx - y%(YX).

(53) (z-x)*y - (z + zx)%y - z + zx + zy + zxy is symetric
lIn x sad y. Hene their roles can be switched and(=)-I - (vf), x. i

This is the quickest way to verify that R is a partially ordered set

and is closed under greatest lover bounds.

La=i 2: x < y if and only if x - xy.

Proef: Let x < y, then x-y - 0 - x + xy. Thus xy - -x - x. Conversely,
let x - xy. Then xy - xyy - xy + xy 2 - xy + xy -0. Hence x < y.

Le=s 3: For all x e R O<x.

Proof: 0 - Ox, thus by Leama 2 0 < '.

Boolean rings are also closed under least upper bounds.
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Theorem 2: If R is a Boolean ring and x e R and y e R then x + y + xy is
the least upper bound of x and y.

Proof: First it must be established that x < x + y + xy and y.< x
S+y_ +xy. This follows from x(x + y + xy) -x2 +--xy + x2y x + xy+xy x

and likewise y(x + y + xy) - y.

Next, suppose x < z and y < z. That is, xz - x and yz - y. Then

(x + y + xy)z - xz + yz + xyz - x + y + xy and hence (x + y + xy) < z.

Therefore x V y - x + y + xy.

Note that the ring is closed under addition and multiplication which
means that the expression x + y + xy is defined for all x and y. Hence
xV y exists for all x and y.

Theorem 3: Any Boolean ring is a distributive lattice with lower bound
In which any principal ideal is a Boolean algebra. This structure is called
a generalized Booleen algebra.

Preef: This follow from Theorem 1 and Theorem 2, which established
that R was a subtraction algebra and that it was closed under least upper
bounds.

-V There is still one more property desired.

L~mm 4: If a Boolean ring has a multiplicative identity 1 it is an upper
boud for the lattice.

Preef: For all x, 1 • x x and thus x<l.

Theorem 5: Any Boolean ring with identity is a Boolean algebra.

Proof: The lattice generated by the ring is a subtraction algebrawith upper bound 1. Therefore, by Theorem 1-17, it is a Boolean algebra.
Corollary: The complement of x in a Boolean ring with identity is

-- 1 + +X.

Pyeof: x'- lx -1 + 1 x -1+ x.

These results provide us with the first example of a ring which generates
a DASSAM. In this case the DASBAM is classical. The op logic is identical

* "to the DASBAM.
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PART TWO: Fields

The nekt type of ring to be considered is one which has much additional
structure, namely a field. A field is a comutative ring with identity in
which every non-zero element has a multiplicative inverse.

Theorem 6: If F is a field it is a partially ordered set under x < y if and
only if x4 -xy.

Proof: (a) x2 . hence x < x (Reflexive)- 2
(b) Let x < y and y < x. Then x - y

aind thus x - 0 or x - y. Likewise
y 2 = yx implies y x or y - 0. If
x - 0 then y2 = yx - 0 and y -0,
therefore y - x. (anti-symmetric)

(e) Let x < y and y_' z. Then x2 . xy
amdy -yz. Thus either y - 0 or
y - a. if y - 0 then x - 0 and xz - 0.
Thoe x < z. If y - z them x 2 - xz and
x + z. (Transitive)

2This partial order is somewhat trivial, as x nxy implies x - 0 or
x - y in a field. Again, as with Boolean rings the following leuma is true.

Linm5: 0 < x for all x e F.

2Proof: 0 . 0 -0., heaee 0 < x.

The partial order dia wa belew i.lu ~re. the Sameal partial order
diagram of a field.

Bach non-zero element is an atom and is also maximal. The structure
is that of a semi-classical DASIM where xy - x if y 0 x and 0 if y - x.
Rvery no-zero element is oc to zero and op to each non-zero alement. This

* strueture is called a field DASIW or field msaual.

f"I je 1: Let F - Z.,the prime field of the integers modulo 5. The
partial order diagram is the same as Figure 1.

m le 2: Let F - G722 , the Galois field of order 4 which is the splitting
field of the polynomial x3 - 1 over the prime field Z The partial order
diagram is shown in Figure 2, where a2 + a + 1 - 0.152

4a
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Pigure 2

Exa~ple 3: Let F -U, the real muubers. The field DASBAM has a non-
countably Infinite number of atoms and operations. The partial order
diagrm is show is Pkime 3.

* Sime the only ep equivalenee classes are fO) and F,-JO) it follows
that the partial order dda~Wam f.v the op loojc of may field DASBAM is that
show in Figure 4.

Pbiwe 4

-a N
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PART THREE: Semi-Simple Rings

Definition 2: A semi-simple ring is a ring R in which xn n 0 for any n
implies x - 0, that is, R has no non-zero nilpotents.

Theorem 7: (Wardl . If R is a finite semi-simple ring it is the direct
product of fields."

* This result is quite useful when coupled with Theorem 111-6,
as will be shown by the next Theorem.

Theorem 8: Any finite semi-simple ring forms a DASBAM.

" Proof: By Theorem 7 it is the direct product of fields. Since each
field is a DASUAM,by Theorem III- their direct product is also a DASBAM.
Therefore the ring is a DASUAM.

The structure of these ring DASBAMs is rich and interesting. If
R-FX X...ZJ is the direet product of a fields then each x c R can
be uaquel9exprelsed as em n-tuple ,... nx) where x e F . The ring
operations are the sma as the field operations coordinatewihe and the
DASAM relations are also the relations from the field DASBAMS expressed
coordinatevise. 0 in the ring is (0,0,0,0...) and 1 in the ring is (1,1,...).

Lma 6: u is invertible if and only if ui 0 for all i.

Proof: Lot u be Invertible, them there exists u such that uu M

u u M 1 (1,1,....). Them ui(u ) 1 for all i and hence u is invertible.
S ae x e F is Ivertible if Ld only if x # 0 it follows thatiuj #0.

Cemersely, suppose u - (u1,....,un) where ui # 0 for all i. Then
-l -i -l)

(t _ , _90,...,.u ) is a multiplicative inverse for u and hence u is
11Wertib e.

Theeren 9: x is uauimal if and only if x is invertible.

-. ,f Let x be maximal snd take y to be the n-tuple (Yl' "'.n

Where Y = xi AMe x 0 sad Ym 1 bea x, - O. Clearly xt iy and

heace x<y. Thus x y and xt  0 fer no i. Therefore x is invertible.

Coeersely, let x be invertible and suppose that x < y. Then xi < Yi

for all i. x # 0, so x, - Y, since F. is a field DASIAM. Therefore x - y
4 and x is maxiLTl.

ky ithis theorem the dominating set of maximal elements is the same as
the set of invertible elements.

Theorem 10: x is an atom if and only if x has exactly one non-zero coordinate.

4 ., . . .. . -. : ' .. ., - * " "
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Proof: Let x be an atom and suppose x had two or more non-zero
coordnates xk and xt. The element y with yi - 0 when i 0 t and yt x-

is not zero, yet y < x. Hence x is not an atom.

Suppose x has exactly one non-zero coordinate and suppose y < x.
Then y 0x m whenever 0k and yk -xor 0 us -xo y-
Therefsre x is an atom. y -xory=O.

As with direct products of arbitrary DASBAMs the relations of oc and
S1 op can be defined coordinatewise.

Theorem 11: x oc y if and only if x - 0 whenever yi 0 and x 5 0

* whenever Y - 0.

Proof: (x Ay)1 M xt s Y% M 0 for all i and thus x N y - 0.

(x V Y), M xi V y ewists because either xi or yt - 0. Also x i VY 6 0

beeause either xi or yt is nan-zero. Therefore x V y is invertible and maximal.

i1p Corollary: x oe y if and only ifx y - 0 ad x + y is invertible.

Proof: (y) - xiyi - 0, thue xy = O. (x + Y)i xi + Y, 0 O, thus
x + y is ertibie.

Theorem 12: x op y if aind oly if xI - 0 whenever Y, - 0 and x, O 0
whenever Yi 5I 0.

Ile:i Let z be defined as sueh: z - 0 whenever x and y are non-
- zero ez0 0 whenever xi Yi O. Th x oc z and y oc z. +hus x op y.

Definition 3: e is idempotent if and only if e2 = e. E- ( e Rie is
idempotent} is the set of all idempotents of R.

ThiLs set of idempotents is useful in determining the structure of the
op legic.

Theorem 13: s e E if and only if a, 0 or 1.
Pr : a = e 2 impli.es at = t 2  Because e1 C Ft , a field)ei 0 or

ii
a l i W 1.iaildem o

. Theerem 14: For all x e R there exists ext I such that x op ex .

Ftee: Take a - 1 whenever xi 5 0 and e a 0 whenever x= 0.
x

a e is then idempoteni and ex op x.

This shows that x - ax for some ax E. Thus the op-logic is identical
to the idempetent structure. The next theorem summarizes this nicely by

* giving the general structure of the op logic of a finite semi-simple ring
*- DA *.Mo
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Theorem 15: If R is a finite semi-simple ring DASBAM then R is
isomerphic to E and is hence Boolean.

Proof: Let x e R, then there exists a e E such that x- e A. lso,
mppose Y . Then W C 1 and e < e. laence the uapping preserves
order. z

To show E is Boolean note that each idempotent is an n-tuple of
seroo snd ones. Thus each idempotent can be uniquely identified with the
Boolean algebra containing 2n elements. Therefore the logic and the set
of idempotents are Boolean algebras.

There is one more result relating ring structure to the structure of
the op-logic.

Theorem 16: Let R be a finite send-simple ring and i a K the op-logic.
Those is a one-te-oae corresopedence between the principal order ideals
in the op-logic and the principal ring ideals.

! adLet xsl beataY g deeol. If y e R is such that xi 0 implies

-i 9 h l& is that y e x R.
PertabeZy -O hue~er y - 0 mad zyi - x- 1 Yt when Y1  O.

-i 1

(x- an because Y± 0 and hence x 1 0). x zy Y, for all I, thus

M y= y and y e x R.

The lmut claim is that ey e x . x : 0 if andonlyife x  -O. Also

it  0 implies Yi M 0 amd ey - O. Thus - 0 Implies e - and hence
xi y1

e < ez.*.There ere the prineipal ideal x R is identified with the principal

idalI(eZ). Also ex R cx K e -z zhere z I 0 if x± - 0 and xi if

xI t G. Conversely x €ez as x -xx. Therefore x R = e R end x R y R
: ~on.ly if %

Conversely, let •e Z and take I(Z). This is the set of all elements
y whowe a < a . Tbuse - e & sad y I e & y. Therefore y c ex R. The
order idel'sxidesticalYte Lu idoel.

To conclude this section it is best to present some examples.

4: Let R - Z the rng of the Integers modvlo 6. The partial
Sorder diagram is aok in Firpme 5.

I.' 5-:I

•"0

_ Figure 5
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Z6 is isomorphic to x as shown below:

0 (0,0) idempotent
1 (1,1) idempotent, invertible
2 (0,2)
3 (1,0) idempotent
4 (0,1) idempotent
5 (1,2) invertible

The number of tests is 2 # *(6) where 0 is the Euler phi-function
representing the number of elements relatively prime to 6. Z. is the
product of 2 fields and has 22 - 4 idempotents. As the direct product of
field DASBAMs it is a DASBAM, identical to the free DASBAM on two elements.

Example 5: Let R - Z 3, the ring of the integers modulo 30. Z30 is

isemrphic to the direet product of the fields Z2, Z3 , and Z Hence it

is a DASBM. The pertial order diagram of Z and E ( 30)are given in

Fille 6. The inlml elimeats {1,19,13,.29,23,7,11,17}, the invertibles.
*The atms are {24,10,18,15,,5,20,121, wMch have the property that pa - 0

gwhere p - 2,3, or 5 ad a is am atom. The idempotents are {.25,16,21,10,
15,6,01, those elements In 1(1). The principal ring ideal generated by 21
is {0,3,6,9,12,15,18,21,24,27}, which are the same elements contained in

' 1(7r) In the op-logic.

S

U

ti.

- -.. . . . , . . . . . . . .. ._
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PART FOUR: Rings with Involution

The previous sections of this chapter discussed rings which were
DASBAMs. In this uection rings will be discussed which do not form a
DASIM directly but which generate a DASBAM.

Definition 4: A ring with involution, or *-ring is a ring R with an
"'-' uIvolution uap * : R R satisfying the following:

(a) (x*) -X

(b) (x + y) x+ y
() (xy) -y x

2 *From the *-ring one can choose a subset E < R where E - ce c Rie - e*}.
These are the idempotent sad self-adjoint elements of the ring, also known
as the projections of R.

Theorem 17: Z is a pectially eorred set under a < f if and only if e ef.
" 2

P!_ _: (a) e- e . TW s < (eaf lezive)

(b) Let • < f and f < e. Then e -eof
anf fe. Thus a- e* = (ef)*
f fe - f. (Anti-symaetric)

(a) Lot < f and f < g. Then a ef
and f Z fg. amie eg- (ef)g e(fg)
of - a ad a < g. (Transitive)

Lea 7: 0 is a lowr boumd fe 1.'.i -. ks * (0+0* O* * *

Proof: 0 -0. Also -(0+0) 0 + 0 ,thus 0 - 0. Hence
0 Z. Also Oe -0 fo all e c Z, thus 0 < e for all e e E.

Lomas 8: If the *-ring has a ualtiplicative identity 1 then 1 is an upper
bow"d for E.

-a: 12 = 1 mad x -(x') l'x for all x, thus 1 1. Hence
l e . Fially e.l - for all e e I and thus e <lfor all e c E.

Per tke meet of this section it will be asumed that R has a multi-
plictive identity.

Thereq 18: Z is orthecepleoneted under a1 - 1 - .

Proo: (a) (a) 1 1- (1 - a) -

(U) Let f < and f < e thed fe - f and f(-e) f - fe
- f - -0 f.- Thus 0 is the greatest lower bound
of e sad el.

" (e) Lot e < g sad el < g, then e$ - a and (1 - e)g - g - eg
-0-. but (1--l )$- 1 -e, and thus g 1 whence 1
Is the least upper bound of e and el.
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Definition 5: aAf if and onlyifeof 0 fe.

Lina 9: a 1f if andonly if f <1-a

Proof: Leta f, thaneof 0. Thu f(le) f-fe f-0 f
and f < (1-

Let f < (1 -. ), thn f-f-fe and fe 0. Hence e f.

Theorem 19: e i f implies 0 is the greatest lover bound for e and f and
* + f is the least upper bound for a and f.

Proof: Let e i f and suppose g I a and g.1 f. Then g(ef) - (ge)f
S f - g - 0, as ef - 0. Thus 0 is the greatest lower bound.

Suppose a < g &ad f < g, then (a + f)g - eg + fg - e + f. thus
a + f < X sad e + f is thie least upper bound of e and f.

Gtves the previous results the following theorem, which is the goal
of this section shell be stablished.

Theorem 20: K ii an associative orthoalgebra where L is as defined in
Definition 5. el is1 - . a f is defined whee ifande a Of
a + f. Finally 0 and 1 are the constants from the ringi.

Proof: The semen axioms of Definition IV-5 need to be verified.

Mi e Lf Iplies of 0 -fe. thus f i . Alsos aI f e+ f

(U) a 10 ase a - - . Alsoa *0 - + 0 - .
2(ii) ae1(1-a) asea(1-e) -e-e -emO a- . e (1-.)

-e+ 1 a - 1.

(iv) Lets .i ( 1I- a)), then ef +a-a-0 and thus ef -0.
Wat f 7i (1 a ) ad f - of - 0, thus f - 0.

(v) Letea±L(e * f),thea( +f)- 0-ea+ of. But,ea if
ad of- -0, so that ae- 0.

(vi) Let a ±L f, then e(l - (a M ) - e(l - a - f) a e - a 2  o f
-QI 0 and a ±(e f)1L. Finally (1l-f) a a+(l - f)

sad thus f1 -a e 0 (* f).
(vii) Let & I f ad g L.(e *f), then ge + gf - 0 end ifr-O. Hince-1

MWI +sf 2 -of aad If 0. Thusgj f. Without loss of
9 wrality g a. Thus e(g +f) -g +eof -0 +0 -O0and

a .(g * f) Finally a (f *0 g) -e+ (f + g) -(e + f) + g
-Is 0f) *g.

Cerellary: I generates a DASBAM.

Nevef: By Theorem 20, K is an associative ortho-algebra. Thus, by
Theorem IV-l14 from P. Lock it follows that E is the op logic of some DASBAM.
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This DASM may not itself be part of the ring, but is generated from
it by the cotj.uruction given in Lock's proof. Basically what is done is
maximal orthogonal sets of projections are taken and used to form a manual,

5 from which the event structure is formed to yield a DASBAM.

The next results examine what happens when an additional condition
is added to the *-ring. The projection structure satisfies more special
properties than a general associative orthoalgebra.

. Definition 6: A Beer *-ring is a *-ring satisfying the Baer condition.

Per all subsets S C R there exists e e E such that the right annihilator
of S,i.e. the set {x c Ri s - 0 for all s e S), is the principal right ideal

generated by e, eR - erir c R). That is, ser - 0 for all a e S, r e R.

Theorem 21: If R is a Beer *-ring them E is a complete orthomodular lattice.

rWeL: Let S C Zamnd let e e Z be the annihilator of S, that is fer o
for all f e S, r s. The m re1 -O -fe. Rme f(l - e) f - fe - f and
f < 1 - a for all f e S. Let g be such that f < g for all f c S. Then
f - f ad f(l-) - 0. Rece 1 - g - e mad e(1- g) - e 2 r - er I - g.
Thus 1 - g - a - go and 1 - * - S - o -e -(l -e). Therefore 1 - < g and
1 - i is the least upper beud of S.

e ohew that the greateet loer bend exists, take S' - fl-f if C S).
Let a be the least upper bound fec S', them 1 - e is the greatest lover bound
fer S.

Sdmee S isay ao.bitrary subeet f I it follows that E is a complete
lattice. The orthemodular low as verified as part (vi) of Theorem 20.,
hemee I is a esuplate orthemodular lattice.

To illutate a applieation of this last theorem the next example is
Ppresented.

IM : Let I be a ilbert specs sad take B(H) to be the set of all bounded
linear operators a N. I(1) form a ring under (T + T2)x - T x + T x and
(TT)x - T,(T 2 x). Putlere e t * be the adjoit an B(R) &hen Bfi) isa
eAlj- . P(t) - fT c B(I)IT - Ti - T*} is the set of projections on H and

- serves the se role sa Z is R. To sew the Beer condition let S < B(H) and
.ufoin jgker S. Tse T to be the projection onto this subspace. Then.

ST- 0 for all S e S. Furthermore, suppose SO - 0 for all S c S. Then
Ux C Sker S for all x e I am d thM U - TU. Therefore U c T B(H) and

the leer condition is satisfied. The DASRAM generated from P(H) is the same
s the Kilbert mal s described is hample 111-12.

p.

p.

r2
. . . . . . . . . . . ..o.° . . . . . . .
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classes modulo this relation can be formed. Known as the op logic, this
structure inherits some properties from the DASBAM. It is not a lattice and it
is not distributive, however. It does form what is called an associative
orthoalgebra. Examples of op logics are given.

The results from semi-Boolean algebras and DASBAMs can be applied to
* .certain types of rings. Boolean rings form classical DASBAMs. Fields form

semi-classical DASBAMs in which every atom is a maximal element and vice versa.
*- Semi-simple rings form DASBAMs which are direct products of field DASBAMs.
* The projections of rings with involution form associative orthoalgebras from

which DASBAMs can be generated. In the special case of a Baer *-ring the
projections form an orthomodular lattice.
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